

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

1

OPTIMIZATION OF DATABASE STRUCTURE FOR

HYDROMETEOROLOGICAL MONITORING SYSTEM

Ph.D. Robert SZCZEPANEK

Cracow University of Technology
Institute of Water Engineering and Water Management

ul.Warszawska 24, 31-155 Cracow, Poland
e-mail: robert@iigw.pl

Abstract
 Recent development in automatic monitoring systems affected in exponential growth of
collected data. Simple methods of storage and spatial analysis of hydrometeorological phenomena are
not efficient when dealing with big datasets. This paper presents results of research on databases
structure for collection of high temporal density data (10 minutes) from several sensors installed on
monitoring stations. Number of stations (from 5 to 50) was fitted to conditions of medium size county
in Poland. Analysis of different relational database structures for typical scenarios of data request is
presented. Optimisation criteria include i.a. request time and database size. At the databases design
phase two main factors should be taken into account. First one is time of request, related to crisis
management when fast access to data must be ensured. Second aspect is database size, related to
planning and research phase when wide scope of data should be accessible and time in not so
important. Some methods of database efficiency improvement, not related directly to database
structure, are also presented. Two databases were used for comparison (MySQL and PostgreSQL) and
their efficiency for different scenarios was tested and described.
Keywords: relational database, hydrometeorological monitoring, crisis management, open source

1. INTRODUCTION
 Monitoring of hydrometeorological phenomena in Poland and many European countries in
twenty century was dominated by governmental institutions. Rapid development of automatic
monitoring systems made them available also for local users. Scale of presented research corresponds
to existing local monitoring systems in Poland at county and commune scale. Local government is the
main users of such systems for crisis management purposes at different levels of decision making, but
also private sector starts installing local meteorological monitoring systems. Probably in few next
years, new local monitoring systems will be installed in many places, so information on possible
threats and problems should help decision makers to choose the best solution. To make analysis useful
also for other potential users (e.g. commercial, recreation sector) two different scales of monitoring
installations were analysed – small network with 5 monitoring stations and big network with 50
monitoring stations.
 Main core of technology for monitoring network construction is well known from years, but
infrastructure for data collection (sensors, telemetry systems, data storage hardware) is just the first
step. The second step is more difficult and covers management and analysis of gathered data. Few
potential users of such monitoring systems have knowledge how the system will function in 1-5 years
in terms of cost to efficiency ratio. Main goal of this paper is to demonstrate how different factors, like
database structure and number of data collection points, influence efficiency of data storage and
management. In stead of sophisticated methods like database engine tuning, simple methods of overall
performance improvement are shown and discussed. In presented paper not optimisation sensu stricto
is described, but search for optimal combination of available open source database software and
database structure build on that software.

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

2

2. MATERIALS AND METHODS
 As local user usually runs monitoring system on low- or middle-end infrastructure, research was
done on Intel Pentium 4, 1.6GHz with 1GB RAM, WD Caviar 80GB hard drive (WD800BB) and
Windows 2000 with Service Pack 4 as operating system.
 To have comparable environment, several theoretical assumptions concerning data grow were
outlined. Concept of research is based on real monitoring hydrometeorological systems working in
śywiec County and Kłodzko County in southern Poland. Monitoring networks consist of 28 and 39
stations respectively, with 2÷13 sensors installed on each station.
 For this research purposes two types of hypothetical local networks were assumed:

- “small monitoring network” - 5 stations with 10 sensors each, and
- “big monitoring network” - 50 stations with 10 sensors each.

 It means, whole monitoring network under analysis is between 50 and 500 points of data
acquisition. Each sensor collects data with 10 minutes interval and measurement time precision is one
second. Selected data types for this research were the following: precipitation depth, water table level,
air temperature (3 types), air humidity, wind direction, wind speed, sun radiation and air pressure.
Data gathering scenarios were prepared for three periods – one year (Y1), five years (Y5) and twenty
five years (Y25). Those arbitrary selected periods correspond in my opinion to three stages of
monitoring system life and were selected to present time-snapshot situation. From new system after
one year of operation, to mature system after twenty five years with sufficient amount of data for
hydrometeorological statistical analysis. There are of course existing and available in some places
longer records of observations, but due to storage limitation, only databases smaller than 10GB could
be analysed.
 Next assumption is that all data from monitoring sensors are transmitted to one central system
and stored in central database server. Database server is able to serve data both to local
hydrometeorological models run locally and to remote users connected by web browsers. As reliable
estimation of transfer time in real conditions is very complex problem (Lightstone et al. 2007), only
time of internal database management system response to query was analysed. This is only part of the
time needed to transfer data from database to client, but additional variables like script efficiency and
band width could disturb measurement. Testing procedure was prepared in such a way to minimize
data caching mechanism and its influence on total request time.
 The newest versions of two leading open source relational database engines were tested and
analysed: MySQL 6.0.2-alpha and PostgreSQL 8.2.5. As interface to PostgreSQL database, pgAdmin
III program was used. In case of MySQL database, two tools provided by MySQL AB were used -
MySQL Query Browser to calculate database time response to query and MySQL Administrator for
database size estimation.
 All monitoring data for this project were generated, but their physical properties of
hydrometeorological phenomena were fulfilled. For every type of data, boundary values and specific
“data behaviour” were defined. Air temperature for example was slowly, continuous changing.
Accuracy of data under investigation also was defined individually. Hydrometeorological data were
written into text files by program written in C especially for this purpose. Then data were imported
into database system and designed queries were executed.

3. DATABASE STRUCTURE
 To focus on main research problem, database structure contained only information critical from
performance/size point of view. In real installations number of attributed related to objects (like station
or sensor) is much bigger and includes i.a. spatial attributes used for spatial analysis of meteorological
phenomena or for GIS visualisation.
 All database relational structures and queries presented in this paper were tested on both
database engines – MySQL and PostgreSQL. In the case of MySQL only traditional storage engine
(MyISAM) was implemented in the test. Not providing support i.a. for transactions (Axmark et al.
2007), this type of engine enables faster database response to query and is still the most popular in
web-based database systems. Modern and sophisticated storage engines like InnoDB or Falcon
(Axmark et al. 2007) are not widely used and still MyISAM is the most popular one. Problem of
optimal indexing is crucial in term of efficiency to database size ratio. In general, additional indexes

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

3

speed up query but significantly increase database size (Lightstone 2007). Indexing influence was
shown on query example, not database structure level.
 For this research purpose two the most frequently used relational structures (schemes) were
tested. First database structure (S1) is oriented to monitoring stations. Data from one station are saved
in one table, with columns corresponding to sensors (fig.1). This type of structure is variant and can
change in time as new stations are run or new sensors are installed. Tables for measurement storage
named st1 ... stn on figure 1, have time field as primary key which is indexed and contains detailed
time when measurement was done. Whole process of database management is usually done with help
of additional tables with metadata. External program must take care of table names and their structure
– number and type of columns. In this structure columns types can be well tuned to data types.

Figure 1. Database structure (S1) oriented to monitoring stations.

 Second database structure is static - its structure does not changes in time (fig.2). This approach
is closer to the traditional normalization process, and corresponds to 3rd normal form (Lightstone
2007). All measurement data are held in one table - measurement. Primary key is time field, but
indexing is done on time and sensor_ID respectively. Information on sensors properties is located in
related tables.

Figure 2. Database structure (S2) oriented to normalization.

 Advantage of such structure is that management of such scalable, static structure is much
simpler but because data from each sensor is saved in separate row and all observations are saved in
one table, database size increases rapidly. For 50 stations during 25 years of observations number of
records will be equal to 3 285 000 000! Additionally as there is only one field for all types of
observations, value field (fig.2) must be wide enough to store different types of data.

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

4

4. TEST QUERIES
 Three query types were analysed, focusing on three aspects of database functionality. Example
SQL for each type is presented only for demonstration purposes and uses MySQL syntax (Axmark
2007) for S2 database structure. All queries are prepared in the simplest possible form. As result, no
database specific implementation of SQL standard was tested. Using common syntax made however
possible reliable comparison between MySQL and PostgreSQL.

Query Q1

Objective: search for data from all sensors for certain term.
This query uses key index and its goal was to analyse efficiency of indexing on the most frequently
used field - time. Often used in crisis management when fast response for simple question is main
issue.

Search for data from 2000-07-02 8:00:00
SELECT * FROM measurement JOIN sensor ON measurement.sensor_ID=sensor.ID

WHERE time='2000-07-02 8:00:00'

Query Q2

Objective: search for data exceeding certain values.
This query searches for data not using indexing mechanism. Used both in crisis situation and in
planning phase. Such ad hoc query can be very time consuming, especially when working with big
tables. Used in operational mode when searching for locations of station in space, where threshold
values are exceeded or values probably are wrong.

Search for air temperature at 2m exceeding 20.1 ºC
SELECT * FROM measurement JOIN sensor ON measurement.sensor_ID=sensor.ID

WHERE unit_ID=3 AND value>20.1

Query Q3

Objective: calculate statistics for selected, grouped data.
This is typical analytical query used on large databases. Run usually once and results are stored as new
object.

Calculate average wind speed for every month-year of observations
SELECT YEAR(time), MONTH(time), AVG(value)

FROM measurement JOIN sensor ON measurement.sensor_ID=sensor.ID
WHERE unit_ID=8 GROUP BY YEAR(time), MONTH(time)

5. RESULTS AND DISCUSSION
 Database size in case of big data sets plays important role in planning. Storage media prices are
cheaper every year, but database size influences directly query performance. On figure 3 comparison
of database size for different combinations of database engine, number of stations and database
structure is shown. Please note that on all following figures values are presented in logarithmic scale.
This shows how fast the increase of values under investigation is. Difference between minimal and
maximal case are in the order of three levels of magnitude. After one year of observations database
size vary between 10MB and 3GB. This depends mainly on monitoring network size (5 or 50 stations),
but even for 5 stations the difference is in the order of 300MB. So database size for small networks
can be 30 times bigger when implementing certain database and relational structure.
 All PostgreSQL databases (with circles on figure 3) are much bigger than corresponding
MySQL (squares) ones. Users with limited storage capacity should select MySQL. Database structure
S1 (black) where data are divided into stations needs less space than structure S2 (silver).
Approximately ten times more information can be stored in structure S1 than in S2 and this does not
depend on database type – see overlapping graph for MySQL S1 with 50 stations and MySQL S2 with
5 stations.

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

5

Figure 3. Database size as function of database structure (S1, S2), number of stations (5, 25), database
type (MySQL, PostgreSQL) and observation period (1, 5, 25 years).

 Increase in database size is quasi linear which is not so clear on figure 3 due to logarithmic
vertical scale. So extrapolation of database size seems to be possible and reliable. For extreme
analysed case (database structure S2, 50 stations, 25 year of observations) PostgreSQL database will
be in the order of 100GB.

Figure 4. Time response to Query 1 as function of database structure (S1, S2), number of stations (5,
25), database type (MySQL, PostgreSQL) and observation period (1, 5, 25 years).

1

10

100

1000

10000

0 5 10 15 20 25 30

[years]

[M
B
]

S1 [5 stations] MySQL

S1 [5 stations] PostgreSQL

S1 [50 stations] MySQL

S1 [50 stations] PostgreSQL

S2 [5 stations] MySQL

S2 [5 stations] PostgreSQL

S2 [50 stations] MySQL

S2 [50 stations] PostgreSQL

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35

[years]

[s
]

S1 [5 stations] MySQL

S1 [5 stations] PostgreSQL

S1 [50 stations] MySQL

S1 [50 stations] PostgreSQL

S2 [5 stations] MySQL

S2 [5 stations] PostgreSQL

S2 [50 stations] MySQL

S2 [50 stations] PostgreSQL

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

6

 Second parameter under investigation was request time to query. First query Q1, which uses
indexing mechanism gave in general results below 1 second (fig.4). It is acceptable value for real-time
monitoring used in crisis management systems. Only requests for 50 stations saved in structure S1
from PostgreSQL were between 1 and 10 seconds. Request time on indexed fields is almost constant
and does not depend on number of records for selected case. There is no difference in request time
between one year observations and twenty five years observations. This shows how important and
efficient can be indexing. Request time depend on selected database structure, database type and
number of stations.
 Query Q2 syntax is very similar to Q1, but in the case of Q2 we perform search on fields which
are not indexed. Only MySQL database with structure S1 gives request time below 1 second in whole
range of years, and request time remains almost constant (fig.5). For big dataset (25 years) MySQL
request time is below 10 seconds while for PostgreSQL in most cases exceeds this value. Maximal
query time for Q2 are close to 1000 seconds (corresponding to 16 minutes) and such values are
unacceptable in crisis situations. Database structure for such purpose should be well designed with
special attention paid to indexing of often used fields.

Figure 5. Time response to Query 2 as function of database structure (S1, S2), number of stations (5,
25), database type (MySQL, PostgreSQL) and observation period (1, 5, 25 years).

 Last query Q3 has only analytical purpose so fast answer is not expected. One interesting
observation is that for structure S2 and 50 stations results of MySQL and PostgreSQL are very similar
(fig.6). Due to big database size it was impossible to analyse data for more than 1 year in PostgreSQL.
 Query Q3 is much more complicated than Q2. It includes functions for date transformation and
statistical calculation. But response times are similar except structure S2 for 50 stations in MySQL.

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30 35

[years]

[s
]

S1 [5 stations] MySQL

S1 [5 stations] PostgreSQL

S1 [50 stations] MySQL

S1 [50 stations] PostgreSQL

S2 [5 stations] MySQL

S2 [5 stations] PostgreSQL

S2 [50 stations] MySQL

S2 [50 stations] PostgreSQL

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

7

Figure 6. Time response to Query 3 as function of database structure (S1, S2), number of stations (5,

25), database type (MySQL, PostgreSQL) and observation period (1, 5, 25 years).

 To overcome problems related to linear increase of response time to query several solutions can
be implemented. First of all, data sets should be divided into operational part and analytical part. In
high-end database systems all data are located in one warehouse but this needs a lot of space for data
storage. Data warehouses are still too sophisticated and expensive for local government. Require also
well trained staff to operate and support.
 More pragmatic and cheaper solution is to operate only on recent data (e.g. one year) and take
use of pre-calculated statistics from previous years held in separate database. This way there is fast
access to new data from monitoring stations but at the same time historical data in form of statistical
values are available. Possible solution is also fine tuning of database caching mechanism and database
structure tuning with special emphasis on indexing.
 To get an idea on what is relation between database size and its performance figure 7 and
figure 8 were prepared. They both are based on one scenario where data are collected from 5 stations
during 5 years of observations.
 Expected database size is between 50MB and 1GB (fig.7). When analysing database type
separately (MySQL – PostgreSQL), response time to query for all presented queries is directly related
to database size (fig.7, fig.8). Bigger the database means longer time to access data. So first point in
developing database should be related to minimisation of database size. This can be done be simple
measures which are very often omitted – proper definition of field type and size strictly related to data
be held. Next steps should focus on documentation of working database, especially aspects of
performance and optimisation.
 For all queries except Q3 it is clearly seen that response times of MySQL are two times shorter
than from PostgreSQL. But one should remember that for this comparison old type of MySQL storage
engine (MyISAM) was used which do not support typical nowdays functionality like transactions,
which PostgreSQL tables used in this research does.
 Both presented database structures S1 and S2 can be used, but there is significant differences in
their performance. Implementation of S1 structure require more programming work because of
dynamic nature of database structure. It should however provide smaller databases, better performance
and easier from human point of view structure to read.

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

[years]

[s
]

S1 [5 stations] MySQL

S1 [5 stations] PostgreSQL

S1 [50 stations] MySQL

S1 [50 stations] PostgreSQL

S2 [5 stations] MySQL

S2 [5 stations] PostgreSQL

S2 [50 stations] MySQL

S2 [50 stations] PostgreSQL

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

8

Figure 7. Database size for database structures S1 and S2 in MySQL and PostgreSQL
(5 years of observation from 5 stations).

Figure 8. Database time response to query (Q1-Q3) for database structures S1 and S2 in MySQL and

PostgreSQL (5 years observation from 5 stations).

 In this research several variables which influence overall performance could not be tested. The
most important are processor performance, memory size and hard disk performance.

S
1
 M
yS
Q
L

S
1
 P
o
st
g
re
S
Q
L

S
2
 M
yS
Q
L

S
2
 P
o
st
g
re
S
Q
L

1

10

100

1000

[MB]

S
1
 M
yS
Q
L

S
1
 P
o
st
g
re
S
Q
L

S
2
 M
yS
Q
L

S
2
 P
o
st
g
re
S
Q
L

Q1

Q2

Q3

0.001

0.01

0.1

1

10

100

[s]

GIS Ostrava 2008 27. - 30. 1. 2008, Ostrava

9

 MySQL was always synonym of simplicity and speed while PostgreSQL synonim of advances
in database technology. MySQL is the main database used by web portals to fast deliver of required
data. If well indexed, they can be very fast and can provide excellent speed/size ratio. For users
looking for modern database, who do not care too much about space occupied by databases,
PostgreSQL should be good solution.

6. REFERENCES
Douglas K. (2005) PostgreSQL (2nd Edition). Sams
Lightstone S., Teorey T., Nadeau T. (2007) Physical Database Design: the database professional's

guide to exploiting indexes, views, storage, and more. Morgan Kaufmann
Welling L., Thomson L. (2004) PHP and MySQL Web Development (3rd Edition). Sams
Axmark D., Widenius M., DuBois P., Hinz S., Stephens J., Brown M., Lavin P. (2007) MySQL 6.0

Reference Manual. <http://dev.mysql.com/doc/refman/6.0/en/>
The PostgreSQL Global Development Group (2006) PostgreSQL 8.2.5 Documentation

<http://www.postgresql.org/docs/8.2/interactive/>

