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Abstract. Detection of Singularities by Using DEM Tools. This paper describes methods 
for locating singular points of the digital elevation maps and its structural maps. Search 
for singularities is consequently search for the local disturbances of investigated 
phenomenon. Singularities are important points on the surface. They can help to find 
faults on elevation data, or at visualization of the data. Also, description of the structural 
land surface parameters (LSPs) is provided at the paper. LSPs such as: gradient, slope, 
aspect and curvatures and some characteristics of them are defined and described as well.  
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1   Introduction 

       In matematics, a singularity is in general a point at which a given mathematical object is 
not defined, or a point of an exceptional set where it fails to be well-behaved in some 
particular way, such as differentiability [9]. Search for singularities in scalar field or its isoline 
field is consequently search for the local disturbances of investigated phenomenon. 
Localization of the disturbances on the investigated phenomenon is equally interesting from 
physical as well as from cartographic point of view. Knowledge of singularities in GIS is 
coessential for its own visualization. Surface singularities are prominent landmarks and their 
detection, recognition and classification is a crucial step in computer vision and 3D graphics 
[3]. 
      The information concerning the singular points is more or less contained in the input 
digital elevation datasets, in the grid or irregular points data files. However, working with this 
information smoothing often occurs, thus minor singular areas are eliminated, as well as local 
disturbances respectively. In the case of output regular grids this effect is even more 
supported by its regularity. In the case of the irregular although representative points, 
construction of the triangulated irregular network (TIN) can be corrupted [7].   
     The visual presentation itself, no matter what the form it is (grid or isolines), emphasizes 
this problem depending on selected hypsometric interval.  The situation is the most evident in 
extensive computer presentations using colored hypsometry method where number of colors 
and its shades distinguishable by human eye can clearly prove not to be enough for 
visualization of all surface forms in zoomed domain. Using analogue cartography, map 
consisting of contour lines is being added by cartographical symbols of saddle, hill or pit 
elevation points. Visualization of these points must be preceded by their identification. In the 
GIS the methods for locating singular points of elevation should be a part of implemented 
DEM tools. The aim of this paper is to present that it does not need to be a very complicated 
problem. 
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2   Detection of singularities   

       We consider the scalar field which represents the adequately smooth surface. That means, 
the surface without sharp edges which can be expressed by the single-value, continuous and 
differentiable scalar function s = ƒs (x, y). Using simplified definition, if this equation is 
equation in explicit form for surface expressed by real-valued height function ƒƒƒƒs : M → R  on 
an image which is a smooth manifold M,1 and has only non-degenerate critical or singular 
points then it is a Morse function2. The critical or singular points of the Morse function are 
points of maxima, minima or points of double saddle3. Thus, its identification can be done 
based on topological characteristics of a surface.  
     An algorithm for extraction of the singular points in grid can be based on the method of 
eight-neighbor points [1], [14], called also 3x3 moving kernel method [5], which compares 
the height of investigated point with the height of eight-adjacent neighbors. A peak is given 
by a point that is higher than all other points in its neighborhood.  A pit is given by a point 
that is lower than all other points in its neighborhood. Saddle points are the hardest to identify 
in DEM and there are no algorithms found for locating saddle points in literature [5]. For the 
saddle point it is generally valid that there exist four point couples-neighbours in its 
neighborhood, such that one point of point couple must be higher and the second one lower 
than the investigated point.  
     We can avoid usage of this algorithm, if we know partial derivations of function  ƒs (x, y).  
Based on statements from the second note it is shown, that for identification of the singular 
points of function  ƒs (x, y) we need to know its points in which the first order partial 
derivatives are as follows 

∂ƒs
∂x   =  

∂ƒs
∂y   =  0. 

 
If the function ƒs (x, y)  is a Morse function  then, the  signs of its second order partial 
derivatives are the only necessary information for classification of its singular points. If the 
function ƒs (x, y) is not Morse function to distinguish non-degenerated and degenerated 
critical points we need to know value of its second order partial derivatives. Example of a 
degenerated critical point is inflection point of landslide, in which valley line is turning into 
crest line, limiting case of double saddle point and triple saddle point called also known as 
monkey saddle (saddle for a monkey requires two depressions for the legs and one for the tail) 
(Fig. 1), but as well quadruple and higher-order saddle point. Inflection point of landslide, 
limiting case of double saddle point, triple and higher saddle points are unstable points and 
may be removed by a slight deformation of land surface. 
 

 

1  Hence,  ƒƒƒƒs  is an orthogonal  projection  with  respect  to  the  z axis  and two-dimensional manifold 
M ⊆ R3   defined as M  = {(x, y, z)} : z = ƒƒƒƒs (x, y)}. 
2 A point (xo, yo)  is critical or singular point of function ƒs (x, y) if gradient ∇s at the point (xo, yo) 
vanished, i.e. ∇s = 0. Singular point is non-degenerate if the Hessian matrix ∇2s  of second order 
partial derivatives of function ƒs (x, y) is non-singular, than it has nonzero determinant.   
3 Let point (xo, yo) is non-degenerate critical point and Hessian is determinant of Hessian matrix, which 
is product of its two eigenvalues.  If the Hessian  is positive definite  at  point (xo, yo),   then function  
ƒs (x, y) attains a local extreme at point (xo, yo) and point (xo, yo) is isolated singular point. Eigenvalues 
then  are  both positive for pit, or both negative for pick. If the Hessian is negative definite at  point 
(xo, yo), then function  ƒs (x, y) attains a saddle at point (xo, yo) and two eigenwalues of Hessian matrix 
have different signs. 
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                                                                     a)  

 
b) c)  

 

 

     Fig. 1.  Samples of  degenerate critical points area – a) inflection point of landslide, b) limiting case of saddle 
point, c) triple or monkey saddle point   

 

 

3.1 Structural scalar fields   
  
     Methods mentioned above for locating singularities generated by grid or points data file 
used the information already contained in the scalars values of these datasets, or the partial 
derivatives of scalar fields calculated from the datasets. The worse situation is in 
identification of the singularities of the structural scalar fields. 
     At the present time, the geomorphometry uses the particular local land surface parameters 
(LSPs) such as: magnitude (length) of the two-dimensional gradient vector usualy denoted as 
│∇s│ or │grad s│,4 slope angle γN, aspect angle AN, profile curvature (KN)n, plan and 
tangential curvature Kr and (KN)t. These LSPs create abstract scalar fields which are the 
structural scalar fields of  the original  scalar  field.  For  the  scalar  field  of  altitude  we  can  
write function  s = ƒs (x, y)  in  the form of  h = ƒh (x, y)  or   simplified   h = h (x, y). In 
accordance to the papers [10], [8], [5] and [12] LSPs can be divided by criterion of highest 
order partial derivative of function h = h (x, y) contained in formulas that express scalar fields 
of these LSPs. According to them, magnitude of the altitude gradient │∇h│, slope γN  and 
aspect AN are first order LSPs and curvatures (KN)n and Kr and  (KN)t  are second order  LSPs.   
 

  
4  Magnitude of vector is reffered to as the vector norm. In many texts, vector norms are indicated by a 
double bar, e.g., ║∇s║ is the norm or magnitude of the gradient vector ∇s . 
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     In paper [4] scalar fields of slope γN  and aspect AN  (opposite direction of normal to 
contour line or gradient vector measured in the plane of x and y co-ordinates) expressed based 
on the first order partial derivatives of function h = h (x, y) are considered as the first and 
second structural scalar field of the original scalar field of altitudes. By the derivation of 
functions of these structural scalar fields in one from the two fundamental directions of 
surface, direction of normal to contour line and direction of tangent to contour line, results in 
structural fields of LSPs of second order. The result of derivation of structural fields of LSPs 
of second order in one from the two fundamental directions of surface are structural fields of 
LSPs third order, etc. Particularly LSPs formulas derived from the first and second structural 
scalar field in paper [4] symbols of S and A were used to express the first structural scalar 
field of slope γN  and second structural scalar field of aspect AN  and symbols n and t  to express 
the direction of derivation, lower index n normal direction and lower index t tangent direction.  
     Generally using these symbols for profile curvature following form can be shown: 
 

(KN)n  =  Sn cos S  ≡  Sn cos γN  =  – 
∂ γN
∂n  cos γN , 

 
for plan curvature Kr  respectively: 
 

Kr  ≡ At  =   
∂ AN
∂t   

 
and for tangential curvature (KN)t: 
 

(KN)t  = At sin S  ≡ At sin γN  =  
∂ AN
∂t  sin γN . 

 
     In paper [8] the scalar fields of slope γN  and aspect AN  in position of the first and second 
structural scalar field were complemented by scalar field of gradient magnitude │∇h│. In 
such a way a number of theoretically possible and derived LSPs second and heigher orders 
was increased. For formulas of particular LSPs derived from scalar field of gradient 
magnitude, in paper [8] symbol D was used to express scalar field of gradient magnitude. 
    It is possible to derive formulas expressing LSPs of next order by using the described 
method for expression of structural scalar fields, function’s derivation expressing LSPs of 
given order. By this method it is possible to express LSPs up to the order which depends on 
quality of function h = h (x, y) which need to have continuous partial derivatives at least up to 
the previous order.   
    In accordance with mentioned above and set (11) in the paper [8], we can theoretically 
write the potential base of LSPs set in the form of: 
 

GRF = { (0)GRF , (1)GRF, (2)GRF, ... , (k)GRF },    
 
when its subsets have the following form: 
 
(0)GRF = { h } 
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(1)GRF = { D ≡│∇h│≡│grad h│ = tg γN   = ∂ h∂n  = 





∂ h

∂x

2

 + 






∂ h

∂y  
2

 ,  S ≡ γN  = arctg 




∂ h

∂n  ,  

                A ≡ AN  = arctg 







- 
∂ h
∂y  /- 

∂ h
∂x  } 

 
(2)GRF = { Dn = - ∂│∇h│∂n , Dt = 

∂│∇h│
∂t ,  Sn = - 

∂ γN 
∂n , (KN)n = Sn cos γN , St = 

∂ γN 
∂t , At ≡ Kr = 

∂ AN 
∂t ,  

                (KN)t  = Kr sin γN  , An = - 
∂ AN 
∂n  , DDD222       } 

    
(3)GRF = { Dnn = - ∂ Dn∂n  ,  Dnt = 

∂ Dn
∂t  ,  Dtt = 

∂ Dt
∂t  ,  Dtn = - 

∂ Dt
∂n  ,   Snn = - 

∂ Sn
∂n  ,  Snt = 

∂ Sn
∂t  , 

                (KN)nn  = - 
∂(KN)n 
∂n  ,  (KN)nt  = 

∂(KN)n 
∂t  ,  Stt = 

∂ St
∂t  ,  Stn = - 

∂ St
∂n  ,  Att = 

∂ At
∂t  , Atn = - 

∂ At
∂n  , 

                (KN)tt  = 
∂(KN)t 
∂t  ,  (KN)tn  = - 

∂(KN)t 
∂n  , Ann = - 

∂ An
∂n  ,  Ant = 

∂ An
∂t  } 

. 

. 

. 

(k)GRF = [ (sk)i ]2
 (k +1)

 i = 1  
 

    Negative signs in second members of equations of LSPs, which were expressed by the 
normal direction derivative mean, that in contrast with uphill normal direction we take into 
consideration opposite orientation in flow direction. 
 
 
3.2 Singularities of structural scalar fields   
 
    There are singular points of its structural scalar fields constrained at the singular points of 
the altitude scalar field. These points potentially can have different characteristics. For 
example, the singular points of scalar fields of particular LSPs can be degenerated critical 
points even if constrained to the non-degenerated critical points of original scalar field. This 
quality has for example the scalar field of aspect AN  or scalar fields of second or higher 
orders.  
     Not all singular points of structural scalar fields are constrained to the singular points of 
original scalar field. This means, that not all singular points of particular LSPs scalar fields 
have to be identical with the centre points of original grid or with node points of original 
regular as well as irregular geometric networks. 
     Zero isolines of the profile curvature passes through these singular points in scalar fields of 
slope angle γN and gradient magnitude │∇h│ and zero isolines of the plan or tangential 
curvature passes through these singular points in scalar field of slope aspect AN  [6].  
     If the following conditions are valid: 
 

∂│∇h│
∂x   =  

∂│∇h│
∂y   = 0   ∨  

∂ γN
∂x   =  

∂ γN
∂y   = 0 ,  

 
which is accomplished only when 
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∂ h
∂x   

∂2h
∂x2  +  

∂ h
∂y   

∂2h
∂y∂x  =  0   ∧   

∂ h
∂x   

∂2h
∂x∂y  +  

∂ h
∂y   

∂2h
∂y2  =  0 , 

 
in accordance with paper [6] the structural scalar fields of gradient magnitude│∇h│ and slope 
angle γN  derived from function h = h (x, y) of original scalar field of altitudes have except the 
singular points constrained to the peak, pit and saddle points of function h = h (x, y) also the 
singular points, for which the following conditions are valid:    
 

1. 
∂ h
∂x  = 0  ∧ 

∂ h
∂y  ≠ 0  ⇒ 

∂2h
∂y∂x = 0  ∧ 

∂2h
∂y2 = 0   whereby  

∂2h
∂x2 ≠  0  ∨  

∂2h
∂x2 = 0,    

 

2. 
∂ h
∂x  ≠ 0  ∧ 

∂ h
∂y  = 0  ⇒ 

∂2h
∂x2 = 0  ∧ 

∂2h
∂x∂y = 0   whereby  

∂2h
∂y2 ≠  0  ∨  

∂2h
∂y2 = 0,    

 

3. 
∂ h
∂x  ≠ 0  ∧  

∂ h
∂y  ≠ 0  ⇒ 

∂2h
∂x2 = 0  ∧ 

∂2h
∂y∂x = 0  ∧ 

∂2h
∂y2 = 0.   

 
      Similarly, if the following condition is valid: 
 

∂ AN
∂x   =  

∂ AN
∂y   = 0 ,  

 
which is accomplished only when 
 

∂ h
∂x   

∂2h
∂y2  -  

∂ h
∂y   

∂2h
∂x∂y =  0   ∧  

∂ h
∂x   

∂2h
∂y∂x  -  

∂ h
∂y   

∂2h
∂x2 =  0 , 

 
the structural field of slope aspect AN derived from function h = h (x, y) of original scalar 
fields of altitudes has except the singular points constrained to the peak, pit and saddle points 
of function h = h (x, y) also the singular points, for which the following conditions are valid:     
 

1. 
∂ h
∂x  = 0  ∧  

∂ h
∂y  ≠ 0  ⇒   

∂2h
∂x∂y = 0  ∧ 

∂2h
∂x2 = 0   whereby 

∂2h
∂y2 ≠  0  ∨  

∂2h
∂y2 = 0,     

 

2. 
∂ h
∂x  ≠ 0  ∧  

∂ h
∂y  = 0  ⇒ 

∂2h
∂y2 = 0  ∧  

∂2h
∂y∂x = 0   whereby  

∂2h
∂x2 ≠  0  ∨  

∂2h
∂x2 = 0,     

 

3. 
∂ h
∂x  ≠ 0  ∧  

∂ h
∂y  ≠ 0  ⇒ 

∂2h
∂x2 = 0  ∧ 

∂2h
∂y∂x = 0  ∧ 

∂2h
∂y2 = 0.   

 
      The structural fields of slope or gradient magnitude and aspect have except singular points 
constrained to the peak, pit and saddle points of original scalar fields also the singular points,  
where zero isolines of the profile curvature and tangential or  plan curvatures are passing, but 
for which conditions triplets described above are not valid. This means, that these conditions 
can be  sufficient but they do not have to be the necessary conditions. 
     In the both triplets of described conditions for discriminant D2 of second fundamental  
form of the surface the following is valid: 
 



GIS Ostrava 2008   Ostrava 27. – 30. 1. 2008 
 

 7 

D2  =  




∂2h

∂x∂y

2

 -  
∂2h
∂x2   

∂2h
∂y2 = 0  . 

 
This simultaneously is the condition for the parabolic points of regular surface. By testing the 
relevant structural scalar fields we found out, that its singular points, non-constrained to the 
peak, pit and saddle points of original scalar field, are identical with the intersection points of 
the zero isolines of the profile curvature and tangential or  plan curvatures and zero isolines of 
the discriminant D2. Thus the discriminant D2 is from our point of view an important LSP.    
     In accordance with paper [8], in the scalar field of slope angle γN or gradient magnitude 
│∇h│, the isoline St = 0, which is identical with isoline Dt = 0 and passes through the set of 
points with extreme value of slope angle γN  or extreme value of the gradient magnitude 
│∇h│. Because based on the paper [4] it is valid that St ≡ An = 0, we can supplement the 
previous sentence to with: “and simultaneously identical with isoline An = 0”. Then, in 
accordance with this paper, isoline St = Dt = An = 0 and passes through the inflection points of 
orthogonal projections of space slope curves on the plane of x and y co-ordinates, i.e. on the 
map and divides these planar curves on the convex and concave parts. LSP of St can be 
interpreted as the planar curvature of the flow lines and in accordance with paper [2], LSP of 
An can be interpreted as the torsion of contour line. The result of above mentioned is as 
follows: the point (xo, yo) is land surface point of change of flow direction if LSPs of St , Dt 
and At at the point (xo, yo) are equal to zero. In these places of land surface the principal 
directions of surface (directions of minimal and maximal curvatures) depends from directions 
of the flow and contour line accordingly.   
     For isoline of St = Dt = An = 0 it is valid that also in the scalar field of aspect angle AN  it 
passes through  set of points with extreme values of  aspect angle AN . The Fig. 2 illustrates, 
that isoline D2 = 0  and isoline of St = Dt = An = 0  pass trough singular points of scalar field of 
slope angle γN or gradient magnitude │∇h│ and through scalar field of aspect angle AN as 
well. In the case of the scalar field of slope angle γN or gradient magnitude │∇h│, the 
following has to be valid for these singular points: (KN)n = Sn = 0  and in case of scalar field of 
aspect angle AN  the following has to be valid: (KN)t = Kr = 0 as well.   
 

Aspect

Sl
op
e

2

t

n

N

N

t

 
 

Fig. 2.  Intersections the zero isolines of profile (KN)n or tangential (KN)t  curvature and zero isolines of 
discriminant D2 of second gauss differential form of surface and zero isolines of  LSPs  St  in singular points of 

aspect and slope isoline fields. 
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      Fig. 3.  Isoline field of aspect  AN   in the role of the original field and intersections the zero isolines of partial 

derivatives where 
∂ AN
∂x  = Sx  and  

∂ AN
∂y  = Sy  . 

 
 

 
      Fig. 4.  Isoline field of profile curvature (KN)n  in the role of the original field and intersections the zero 

isolines of partial derivatives where 
∂(KN)n
 ∂x

  = Sx   and    
∂(KN)n
∂y   =  Sy  . 

 
 
       Identification of the singular points in the scalar and its isoline fields of LSPs of second 
and higher orders isn’t such simple problem. In accordance with in the paper mentioned 
method  for  derivation  of  particular LSPs,  can, in case of LSPs of second and higher orders, 
only be formulized the  rule, which concerns the occurrence of its extremes. The rule states, 
that the zero isolines of LSPs pass through the extremes of abstract scalar fields of second and 
higher order LSPs. The zero isolines of LSP are derived from one-degree lower LSP functions 
by  its  derivation  in  the  direction  based on  which function of LSP was defined and the rule 
applies only to the function. For example: the isolines 
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(KN)nn =  
∂(KN)n
∂n  = 

∂(Sn cos γN)
∂n   = 0 , Att =  

∂ At 
∂t  = 

∂2AN
∂t2  = 0 , (KN)tt  =  

∂(KN)t
∂t  =  

∂(At sin γN)
∂t   = 0 ,  

 

Dtt = 
∂ Dt
∂t  = 

∂2│∇h│
∂t2  = 0 ,  Stt = 

∂ St
∂t  = 

∂2 γN
∂t2  = 0 ,  Ann = 

∂ An
∂n  = 

∂2AN
∂n2  = 0  

 
pass through the singular points of the scalar fields of the profile curvature, tangential and 
plan curvatures and Dt, St and An curvatures  respectively.  
      Each LSP which is the element of set GRF except the altitude h, creates the abstract scalar 
field. This scalar field is the structural field of original scalar field of altitudes defined by 
function h = h (x, y). We can consider these scalar fields, even if these are the abstract scalar 
fields, as an original  scalar  fields  such  that  for the selected LSP,  we can consider  function 
LSP = fLSP (x, y). This expression is an identical form with equation s = fs (x, y). Then the 
following has to be valid: LSP ≡ s ≡ h and selected LSP will be the single element of first 
subset (0)GRF  of set GRF. If the first order partial derivatives   
 

∂fLSP
∂x   and  

∂fLSP
∂y   

 
at the point (xo, yo) of function LSP = fLSP (x, y) are equal to zero, then the point (xo, yo) is the 
singular point of abstract surface of particular LSP. This means, that singular points of 
particular LSPs can be located based on the intersection points of the zero isolines of the first 
order partial derivatives of their field functions with respect to x and y variable. These LSPs 
now have status as an original scalar field of altitudes. There are outlines of zero isolines of 
the first order partial derivatives   
 

∂ AN
∂x  , 

∂ AN
∂y    and  

∂(KN)n
 ∂x  , 

∂(KN)n
∂y    

 
of non-continuous function of scalar field of aspect AN  and function of scalar field of profile 
curvature (KN)n  in the role of the original scalar fields at the Fig. 3, 4. 
 
 
4  Conclusions   

     For singular points of the function of the two variables  ƒs (x, y)  following mathematical 
conditions are valid: 

∂ƒs
∂x   =  

∂ƒs
∂y   =  0 . 

     To identify the points for which these conditions are valid, we need the tools which are 
able to generate the partial derivatives of the modeled scalar or isoline fields. These tools are 
present in GIS basis for DEM, and are capable to deliver not only visualization outputs, but 
outputs based on the analysis of the DEM.  Regrettably, the current GIS and DEM software 
mostly do not enable us to generate output datafiles of the partial derivatives of the used  
interpolation functions. It is a pity, because the simplest way for finding of faults in every 
modeled scalar field is automated detection of its singular points. 
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     Having access to directional derivatives of the modeled scalar field, in the form of output 
files generated by the DEM tools, allows us to find singularities or to calculate new 
morphometric land surface parameters without using the complicated programming 
procedures. 
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