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Abstract. The general purpose of this paper is to indroduce the most popular 
geostatistical methods for integration of the different data sources measure the 
same characteristic but in different ways. The information available on a natural 
phenomenon is rarely limited to the values assumed by a single variable over a set 
of samples points. Direct measurements of the primary attribute, or variable under 
study, are often supplemented by secondary information originating from other 
related categorical or continuous attributes, or secondary (auxiliary) variables. 
Most real studies involve more than one variable. In general, the estimation 
improves when this additional information is taken into consideration, particularly 
when primary data are sparse or poorly correlated in space. 

The paper deals with the most popular geostatistical methods of data integration: 
cokriging, collocated cokriging and kriging with an external drift. The paper 
describes some simple mathematical background of the presented methods, and 
also some practical examples are given with comments on the obtained results.  

Keywords: coregionalization, cross-variogram, primary and secondary variable.  

1 Introduction 

An important task in the spatial modelling is to investigate various information and 
their relationships. The greatest challenge in the spatial modelling is "an integration" of 
different sources of information, describing the same phenomenon in different ways, with 
unwritten rule: "Do not avoid what is known.". Geostatistics, and its multivariate techniques, 
provides space and tools to build that consistent models[2]. Except general cokriging, 
extending kriging to multivariate interpolation, there are another, more sophisticated, methods 
for spatial data integration. One of way of dealing with multiple variables is to treat one of 
them as a second-order stationary spatial random variable and treat the remaining variables in 
a deterministic manner, analogous to the way in which spatial drift (trend) is modelled for the 
non-stationary case. The trend model is then taken in kriging estimation method as an external 
drift. Another possibility is to take advantage of jointed spatial variability through direct and 
cross-variogram models and to use cokriging procedure or its collocated version.  

2 Multivariate geostatistical models 

The natural extension of the concept of a single-variable regionalisation to some several 
variables is a coregionalisation. It is essentially the joint regionalisation of two or more 
variables which may, or may not, be spatially inter-correlated [7]. In practical situation, 
however, we are not interested in the trivial case in which there is no correlation among the 
variables as each variable can be treated independently using univariate geostatistical 



GIS Ostrava 2008   Ostrava 27. – 30. 1. 2008 
 

 2 

methods. The scattergram of collocated variables Z and V values, or the values of the 
variables Z(x) and V(x) measured in the same locations xα; α = 1, …, n;  provides the first 
assessment of the corelation between two variables. In general, the realtionship between 
paired values z(xα) and v(xα) does not suffice to capture the full spatial relationship between 
two variables. The cross-spatial realtionship between pairs of values separated by some lag 
distances h, z(xα), v(xα + h); α = 1, …, n(h); must also be considered [4]. The cross-varigram, 
defined bellow, measures this cross spatial dependence between two variables.  

2.1 Cross-variogram   

For the multivariate case, in which variables are spatially inter-correlated, we can make 
assumptions of stationarity that are analogous to the univariate case. On the assumption of 
second-order stationarity we have: 
 

1. The expectation of each variable is constant:  
 

( )[ ]
k

Zk xZ µ=E    for a set of variables k = 1, …, K. (1) 

 
2. A cross-covariance can be defined for each pair of variables Z(x) and V(x): 
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3. A cross-variogram can be defined for each pair of variables Z(x) and V(x): 

 
( ) ( ) ( )[ ] ( ) ( )[ ]{ }hxVxVhxZxZhZV +−⋅+−=γ E2 . (3) 

 
  In case of V = Z is cross-variogram (3) reduced to the classical definition of the 
variogram for one variable of Z: 
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what is the average product of difference of the z(x) – z(x+h) multiplied by itself. The cross-
variogram is then the average product of the z difference, z(x) – z(x+h), and the v difference 
for the same location and lag distance h, v(x) – v(x+h). The cross-variogram satisfies the 
inequality: 
 

( ) ( ) ( ) 2
hhh ZVVVZZ γ=γ⋅γ .  (5) 

   
  Unlike covariance and variogram functions, cross-covariance and cross-variogram can 
take negative values, which would indicate a negative spatial correlation between Z(x) and 
V(x). Figure 1 shows an example of the cross-variography results taken from [15], where is 
given more detail. The values of the cross-variograms (G., H. and I.) reflect the signs of the 
correlation coeficients (A., B. and C.). Note the values of the direct, or single variograms (D., 
E. and F.) that are always positive.  
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  On the assumption of second-order stationarity the relationship between the cross-
covariance and cross-variogram is: 
 

( ) ( ) ( ) ( )hChCCh ZVZVZVZV −−−=γ 022 .  (6) 
 
Whilst a cross-variogram is symetrical in terms of the pairs of variables and in the direction of 
calculation: 
 

( ) ( ) ( ) ( )hhhh ZVZVVZZV −γ=γγ=γ          and         ,  (7) 
 
this is not necessarily so for the cross-covariance: 
 

( ) ( ) ( ) ( ) ( ) ( )hChChChChChC VZZVZVZVVZZV ≠≠−−=      and     but          ,  (8) 
 
i.e., changing the order in which the variables are entered into calculation or changing the 
direction of the separation vector h may change the value of the cross-covariance. That 
means, cross-variogram, which covers only the even term of covariance, should not be used 
where asymetry is thought to be significant, form example in time-series application [18].   

 
Figure 1. Experimental directional variograms and cross-variogram for Fe, Mg and Ca 
variables. The values of the cross-variograms (G., H. and I.) reflect the signs of the 
correlation coeficients (A., B. and C.). Row (D., E. and F.) represents single variograms for 
three variables under study. 
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2.2 Permissible models of cross-variograms   

Modelling of a coregionalization calls for infering K(K + 1)/2 direct and cross-variogram 
models for K inter-correlated random functions Zk(x). The difficulty does not lie in the 
number of models to infer, but in the fact that these models cannot be built independently 
from one another. The cross-variogram can be modelled in the same way as that variogram, 
and the same restricted set of mathematical functions, or basic structures, is  available. But to 
describe the corregionalization there is an another condition. Any linear combination of the K 
variables is itself a regionalized variable, and its variance must be positive or zero. It may not 
be negative because there is nothing like the negative variance. Only models that ensure the 
validity of positive variance calculations can be used for a coregionalisation modelling 
purpose and in kriging. Such models are called permissible models [17].  
  Denote {Zk(x); k = 1, …,K} a set of K inter-correlated random functions. The variance 
of any finite linear combination, LC, of the random functions Zk(xα) can be expressed as a 
linear combination of cross-covariance values: 
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where ωωωωα is 1×K  vector of weights ωαk, [ωα1, …, ωαK]T, and Cαβ is the KK ×  matrix of 
stationary cross-covariances between any two random functions ( )αxZ k and ( )hl xZ +α=β , 

( )hCkl . 
 

  From the relation between covariance and variogram C(h) = C(0) – γ(h), the variance 
(9) can be rewritten  in terms of matrix of variogram models γγγγ(h): 
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where C(0) is the variance-covariance matrix. For the variogram models there are the 
unbouded ones (models without sill) that have no covariance counterpart, corresponding to 
the intrisic but non-stacionary random function [9]. For such models, the variance of LC is 
defined on the condition that the vectors of ωωωωα sum to null vector, which allows the filtering 
of the terms C(0) from (10): 
 

[ ] ( ) 00
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  Expression (11) shows that to ensure non-negativity of the variance of LC, the matrix 
of variogram models γγγγ(h) must be conditionally negative semi-definite under condition that 
the sum of vectors ωωωωα is the null vector [9].  
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2.3 Linear model of coregionalization   

In the linear model of coregionalization we assume that each variable Zk(x) is a linear sum of 

(S + 1) orthogonal, i.e. independent, random variables ( )xY
s

r , each with mean 0 and basic 

variogram function, or structure, Γs(h). Subscript s is simply an index, not a power: 
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  In this expression we have: 
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These conditions express the mutual (two by two) independence of the random functions 

( )xY
s

r  [9]. 
  The the variogram for any pair of variables k and l is defined as the set of KK ×  
direct and cross-variograms such as: 
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where the s
klb  is sill of the basic variogram model Γs(h). These s

klb  represent the variances 

and covariances, i.e. nugget and sill variances, for the independent components if they are 

bounded. For unbounded variograms the s
klb  are nugget variances and gradients [18]. By 

construction, the coeficients s
klb  and s

lkb  are identical for all s, and for each s the matrix of 

coeficients: 
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must be positive definite. Since the matrix is symmetric, it is sufficient that 0≥s
kkb  and 

0≥s
llb  and that its determinant is positive or zero. For K coregionalized variable the full 

matrix of coeficients will be order K, and its determinant and all its principal minors must be 
positive or zero [11]. 
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  The intrisic coregionalization model is but a particular linear model (16) in which all 

the K(K + 1)/2 coeficients s
klb  of any variogram function Γs(h) are proportional to each other 

with coeficients φkl:  
 

( ) ( )
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where Γ0(h) is the same standardized linear model of regionalization. The intrisic 
coregionalization model is much more restrictive than the linear model of coregionalization. 
The K(K + 1)/2 direct and cross-variogram models must include all (S + 1) structures in the 
same proportion bs. Any linear model of coregionalization that consists of a single basic 
structure of variogram is an intrisic model of coregionalization. 

3 Cokriging 

The term kriging is traditionally reserved for linear regresion using data on the same attribute 
as that being estimated. The term cokriging is reserved for linear regression that also uses data 
defined on different attributes [5]. Consider the simpliest case where we have two spatially 
correlated variables, Z(x) and V(x) with autovariograms γZ(h) and γV(h) and cross-variogram 

γZV(h). Variable Z(x) has been sampled at a set of locations Z
xα  and variable V(x) has been 

sampled at a set locations V
xα . It is assumed that there is some overlap between Z

xα  and V
xα  

(the variables share some sample locations – partial heterotopic). In case of a single 
secondary varible V(x), the ordinary cokriging estimator of Z(x0) is written: 
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  The cokriging equations system is found by minimising the estimation variance 
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  The associated kriging variance is: 
 

Z
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0
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0
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  In isotopic case (the variables share all sample locations), the advantage of cokriging 
is that the cokriging estimator of a sum of variables is equal to the sum of the cokriging 
estimators. For example, the thickness of a geological layer T(x) is defined as the difference 
between the depths of the bottom limit ZB(x) and top one ZT(x) of that layer. The difference of 
cokriging estimators of ZB(x) and ZT(x) ensures the positive estimation of T(x). Figure 2 
shows an example of thickness of the layer estimation as a product of difference of cokriged 
estimations of the top and bottom elevations of the layer. More detail can be found in [16].  
 

 
Figure 2. Estimation of thickness of the layer C. as a product of diferrence of cokriged  
estimations of the top A. and bottom B. elevation of the layer. The arrows show the main 
faults positions. 
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  The cokriging estimator is theoretically better than the kriging one because its error 
variance is always smaller or equal than the error variance of kriging which ignores all 
secondary variables, or auxiliary information [9]. The cokriging estimator (18) can be 
extended to any K number secondary variables. The variogram matrix requires K(K + 1)/2 
variogram functions when K different varibles are considered in a cokriging. The inference 
becomes extremely demanding in terms of data and subsequent joint modelling is particularly 
tedious. This is the main reason why cokriging has not been extensively used in practice for a 
high number of variables. Another reason that cokriging is not used extensively in practice is 
the screen effect of the better correlated data (usually the z samples) over the data less 
correlated with the z unknown (the v samples). Unless the primary variable, that which is 
being estimated, is undersampled with respect to the secondary data, the weights given to the 
secondary data tend to be small and the reduction in estimation variance brought by cokriging 
is not worth the additional inference and modelling effort [5].  

4 Collocated cokriging 

When secondary variable is much more densely sampled than the primary variable, or 
secondary variable is available at each estimated position, the left side of kriging system with 
variogram values may be unstable because the correlation between close secondary data is 
much greater than the correlation between distant primary data. Moreover, secondary data that 
are very close or collocated with the position of an unknown primary value z(x0) tend to 
screen the influence of secondary data that are further away [9].  
  A reduced form of cokriging consist of retaining only collocated secondary data 

( )0xxv =α , or relocated data v’(xα →  x0) to the nearest node x0 being estimated. That means 

the collocated cokriging method uses (nZ + 1) values. The collocated cokriging estimator is 
written:  
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with the contraint that all weights must sum to one:  
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The corresponding cokriging system requires knowledge of only the variogram γZ(h) a cross-
variogram γZV(h). The weights are obtained by solving the following system of (nZ + 2) linear 
equation:  
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4.1 Multi-collocated cokriging   

The idea of the multicollocated cokriging is to enhance the cokriging process by adding for 
each target point the value of the secondary variable value at this location. The system 
resembles the traditional cokriging techniques where one additional sample, which coincides 
with a target point, and for which only secondary variable value is provided. The technique 
requires a bivariate structure model of primary and secondary variables defined at primary 
data locations. In general case where there are n primary data values, accompanied by n 
secondary data values, in the cokriging neighbourhood, the estimator become: 
 

( ) ( ) ( ){ } ( )00
1

0
*

xVxVxZxZ
V

n
VZ

CCK

Z

Z

ω+ω+ω= ∑
=α

αααα , (24) 

 
with (2nZ + 1) values for corresponding kriging system [1]. 

4.2 Markov – Bayes approximation of collocated cokriging   

The aim of collocated cokriging with Markov-Bayes approximation is to take the full 
advantage of the densely sampled secondary variable, especially during the structural analysis 
and variography where the cross-variogram and variogram of the primary variable are derived 
by simply scaling the secondary variogram [9]. The scaling factors are obtained by comparing 
the experimental variances of primary and secondary datasets and using their correlation 
coeficient.  
  Figure 3 shows an example three different results of Late Sarmatian sediment 
thickness estimations [m]. Figure A. shows the result obtained by kriging based only on drill-
hole data as primary variable. Figure B. shows result base on collocated cokriging with 
seismic map as secondary variable. Due to low correlation between primary and secondary 
variable, the result resemble the kriging solution without using the seismic information. The 
kriged sediment thickness map takes more of seismic background as the correlation increase. 
The result of collocated cokriging based on Markov-Bayes approximation is shown in 
Figure C. Accounting for secondary variable through approximation of variogram function of 
the primary variable and cross-variogram yields more detailed map to the one based on cross-
variography of collocated primary and secondary variable.  
 
 

 
Figure 3. Three different results of the sediment thickness estimation [m]. Figure A. shows 
estimation based only on primary variable (drill-holes). Figure B. shows the result obtained 
with collocated cokriging using seismic information as secondary variable. Figure C. shows 
the results of Markov-Bayes approximation of collocated cokriging. 
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5 Kriging with an external drift 

Kriging with an external drift considers a non-parametric trend shape that could come from a 
secondary variable such as seismic. Kriging with an external drift is but a variant of kriging 
with a trend model for an intrisic but non-stationary random function. The trend model is 
limited to the two terms ( ) ( )xfaaxd 110 += , with the term ( )xf1  set equal to a secondary, or 

external, variable instead of as a function of the spatial coordinates. The smooth variability of 
the secondary variable V(x) is related to that primary variable Z(x) being estimated [17]. The 
trend model is then: 
 

( )[ ] ( ) ( )xvaaxxZ Z 10 +=µ=E , (25) 
 
where v(x) is assumed to reflect the spatial trends of the z variability up to a linear rescaling of 
units (corresponding to the two parameters a0 and a1). The estimator is:  
 

( ) ( )∑
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The solution of the following kriging system with (n + 2) linear equation are the kriging 
weights ωα: 
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  The kriging with an external drift is a particular case of the kriging with a trend system 
where the trend function is a linear and the trend component ( )xf1  at any location x is 
identified with value v(x). The trend model (26) states that the local average of the primary 
variable z(x) is linearly related to the secondary datum v(x). It is critical to validate that 
assumption. For instance, it makes sense to assume that the seismic travel time to a reflecting 
horizont is linearly related to the depth of that horizont. Seismic data can then be used as an 
external drift for maping from a few boreholes data [8, 12]. Another example relates to using 
elevation data to model a trend in meteorological data [10, 17], hydrogeology [3], soil science 
[14], biology [13], etc.  
 

  The relation between primary and secondary data must be linear, otherwise an 
appropriate transformation of the secondary variable could make that relation linear form. The 
value of v variable must be available at all data location xα and at all location x0 being 
estimated.  
  Figure 4 A. shows the estimation of Pannonian sediment thickness [m] based on only 
drill-hole data as primary variable by IRF-k kriging method [6]. To improve the spatial 
modelling, the secondary exhaustive information, represented by seismic TWT map [ms] (B.), 
was incorporated in estimation by kriging with external drift (C.). Maps A. and C. show the 
same long-range features of spatial variability, but kriging with external drift yields more 
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local details. Such short short-range variation results from the local re-evaluation of the linear 
regression of primary and secondary variable. The larger variation of the estimates obtained 
by kriging with external drift relates to the larger slopes of the trend model. The combination 
of a steep trend model and low seismic values  (look at south-west area within  geological 
boundaries) yields negative estimates of kriging with external drift of the sediment thickness, 
what is totally unacceptable! On the other side, the black pixels show the estimates of 
thickness higher than the maximum one observed in the experimental data. This extrapolation 
of high value is correct and shows a depocentrum of the sediments, where is no drillhole 
located .  
 
 

 
Figure 4. Map of Pannonian sediment thickness obtained using IRF-k kriging (A.) and 
accounting for the seismic map (B.) as kriging with external drift (C.) 
 

6 Summary 

Cokriging is much more demanding than kriging of one variable because of K(K+1)/2 single 
and cross-variograms must be inferred and jointly modelled, and a large cokriging system 
must be solved. In case of low correlation between primary and secondary data in 
combination with isotopic sampling, (or at least isotopic sampling within search 
neghbourhood) and intrisic model of regionalisation, the weights attached to the secondary 
variable will be systematically zero, and therefore the cokriging result is similar to the one of 
kriging.  
  In the presence of densely sampled secondary information, collocated cokriging is a 
valuable alternative to cokriging because avoid unstability caused by highly redundant 
secondary data, it is faster, since calls for a smaller cokriging system, and it doesn’t call for 
the secondary variogram function for lag h > 0. In case of Markov-Bayes approximation, 
collocated cokriging does not require modelling of cross-variogram function and direct 
variogram function for primary data, because it is inffered from variogram function of 
secondary variable.  
  Collocated cokriging and kriging with an external drift are designed to incorporate 
exhaustively sampled secondary information. In case of kriging with external drift the 
secondary datum provides information only about the primary trend at given location. 
Because the secondary information influences strongly the kriging with external drift, 
especially when the slope of the local trend model is large, final interpretation of results 
should be validated by the physics of the studied phenomenon. The combination the large 
slopes of a trend model with low values of a strictly positive variable yields some negative 
estimates, especially in an extrapolation areas, what is unacceptable.  
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