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Abstract. This article discusses GUI development for GRASS GIS. Sophisticated native
GUI is one of the key points (besides the new 2D/3D raster library, vector architecture
improvements, etc.) for the future development of GRASS.
The current GUI is written in Tcl programming language using Tk graphical toolkit. The
limitations of Tcl/Tk toolkit appeared to be fundamental for the future development. This
issue has been several times discussed in the GRASS developer mailing list. At the end
has been decided to leave Tcl/Tk and to design new native GUI from the scratch using
another graphical toolkit. In particular, wxPython – a blending of the wxWidgets library
with the Python programming language. The project started in the beginning of 2007.
This article attempts to summarize the results of the development.
The new wxPython-based GUI will be available in GRASS 6.4. Native GUI is crucial
for GRASS user politics especially connected to the newcomers or the users who essen-
tially request GUI. The GUI need to reflect the specific needs of GRASS users, must be
intuitive, simple and in the certain point ”minimal”.
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Abstrakt. Tento článek popisuje vývoj GUI pro GRASS GIS. Tvorba sofistikovaného
nativnı́ho GUI je jednı́m ze zásadnı́ch bodů (kromě nové 2D/3D rastrové knihovny,
vylepšenı́ vektorové architektury a pod.) v aktuálnı́m vývoji GRASSu.
Dosavadnı́ GUI je napsáno v programovacı́m jazyce Tcl s využitı́m grafického tool-
kitu Tk. Omezenı́ Tcl/Tk se ukázala jako zásadnı́ pro dalšı́ vývoj. Tato tématika byla
několikrát diskutována ve vývojářském mailing listu GRASSu. Výsledkem bylo rozhod-
nutı́ opustit Tcl/Tk a navrhnout od základů nové nativnı́ GUI s využitı́m jiného grafického
toolkitu. Ve výsledku byl pro budoucı́ vývoj zvolen wxPython (knihovna wxWidgets pro
programovacı́ jazyk Python). Na projektu se pracuje od počátku roku 2007. Tento článek
si klade za cı́l shrnout dosavadnı́ výsledky vývoje.
GUI založené na wxPython bude dostupné v GRASS 6.4. Nativnı́ GUI je důležité pro
uživatelskou politiku GRASSu zejména v souvislosti se začátečnı́ky nebo uživateli, kteřı́
v zasadě pro svoji práci GUI vyžadujı́. GUI musı́ reflektovat specifické potřeby uživatelů
GRASSu, musı́ být intuitivnı́, jednoduché a v určitém ohledu ”minimalistické”.
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1 The GRASS History

GRASS (Geographic Resource Analysis Support System) GIS [1] as a raster/vector GIS (Geograph-
ical Information System) contains over 350 programs (so-called modules) and tools that can create,
manipulate, and store spatial data. It is widely recognized in the open source GIS community that
GRASS is the largest, most powerful and reliable Free Software GIS project.

One of the strengths of GRASS is its modular nature, which allows users to add their own com-
mands to the base system. GRASS provides the opportunity for a person with basic C language pro-
gramming skills to write and link his/her own modules to the package’s internal “front end”. The
ability to study the code organization of existing modules is very helpful and facilitates the creation
of new modules.

1.1 Historical notes

Beginning in the early 1960s, GIS have evolved from mainframe computer programs written in FOR-
TRAN into highly complex desktop PC software that we have today. In the early 1980s, GIS devel-
opment went into two directions. Commercial GIS companies such as ESRI (Environmental Systems
Research Institute) [7] began producing commercial GIS packages such as Arc/Info while the United
States Army Construction Engineering Research Laboratory (USA-CERL) began developing a no-fee
GIS package called Geographic Resource Analysis Support System (GRASS). Costs involved in im-
plementing GIS (acquiring data and hardware, learning GIS skills and computer maintenance skills)
became so high, USA-CERL decided that they could reduce cost of extremely expensive systems by
developing their own software in a Unix environment. This made GRASS the first GIS package to
be available on a PC. It wasn’t until 1986 that some of the larger commercial GIS packages such as
Arc/Info had made the transition from large computers to the PC (PC Arc/Info was released on a Unix
platform). By the mid-1990s many of the original government GRASS GIS users were switching to
proprietary software such ArcView. ESRI’s ArcView would ultimately evolve into present day Arc-
GIS 9.0, while the USA-CERL version of GRASS would eventually become today’s open source and
freely available GRASS 6.2 [21].

GRASS has been under continuous development since 1982 and has involved a large number of
federal US agencies, universities, and private companies. The core components of GRASS and the
management of the integration efforts into GRASS releases were accomplished by the USA-CERL in
Champaign, Illinois. USA-CERL completed its last release of GRASS as version 4.1 in 1992 and also
wrote the core components of the GRASS 5.0 floating point version [18].

GRASS as the oldest Free GIS software is still active. It has played an important role in the
progress made in the geospatial model, both in education and in the scientific community. Moreover,
it has played an important role in the field of business, for creating solutions to solve spatial problems.
USA-CERL discontinued development of GRASS in 1995 and turned over development to the first
GRASS research group at Baylor University in 1997. Currently, GRASS is revised and updated by a
worldwide GRASS development team. The first GPL’ed GRASS GIS has been released in 1999 as
version 5.0.

In the result, GRASS GIS is 25 years of age and still attractive for users and developers [16].
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1.2 The GUI for GRASS GIS

While the early decision to first develop GRASS as a command-line system remained good, the need
to provide users with a GUI (Graphical User Interface) was increasingly difficult to ignore [18]. A
standard way to process command-line arguments was developed and added to every program. This
also provided automatic user prompting and help options to users of nearly all commands. In the early
1990s software efforts were underway to develop an X-windows user interface and to add floating
point support to GRASS. Although GRASS design and development continued, GRASS releases be-
came less frequent which helped accelerate the movement of the GRASS user community towards
commercial software.

GRASS as a piece of software with a long tradition is closely linked to Unix environment. The
GRASS modules are originally CLI-oriented (Command Line Interface). This can be advantage for
developers or power users. The real capabilities of GRASS are basically connected to the power of
CLI. On the other hand, absence of GUI makes learning GRASS extremely hard for newcomers – time
consuming task. The position of GRASS on the market does not correspond to the capabilities which
the software can offer to the end-user. In GRASS world, GUI can be seen as an alternative way how
to use the system, the main advantage for the users is powerful CLI. Anyway GUI is very important
point for the most of GRASS users, requested especially by newcomers. Besides that, there are tools
like Georectifier or Digitizer which are basically mouse-driven.

In this section will be shortly described history of GUI for GRASS GIS. All native GUIs were
written in Tcl scripting language using Tk graphical toolkit.

The first native GUI for GRASS was originally developed by Jacques Bouchard in 1999 and
became part of GRASS 5.x, so-called TCLTKGRASS (fig. 1). The core component was the menu
which allowed users to run GRASS modules via simple graphical dialogs.

Fig. 1. First native GUI for GRASS GIS – TCLTKGRASS available in GRASS 5.0.

The replacement of TCLTKGRASS has been developed by Michael Barton, Radim Blažek and
others. The Display Manager (d.m command) allowed users to run GRASS modules from menu and
moreover graphically manage the GRASS monitors (original X11 driver-based graphics displays), see
fig. 2.

The next step in GUI evolution was GIS Manager (gis.m command) developed mainly by
Michael Barton in 2006 (fig. 3). Display architecture, module menu, graphical module dialogs (which
are generated on-the-fly by the GRASS parser) have been completely rewritten, new output win-
dow and map layer management introduced. Moreover new external tools have been integrated, e.g.
Georectifier (replacement of X11 driver-based i.points module). Also map display window with
integrated basic tools like zooming, panning, data querying has been implemented (as a replacement
of X11 driver-based GRASS monitors).
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Fig. 2. TCLTKGRASS successor – Display Manager in GRASS 6.1.

Fig. 3. GIS Manager in GRASS 6.3.

Digitization tool (v.digitmodule) is originally CLI-based (GRASS 5). GRASS 6 brought com-
pletely rewritten GUI-based module (fig. 4). This module lacks some useful features of old-fashioned
original CLI module, e.g. bulk-labeling (automated labeling of contours). Because of X11 driver de-
pendency of GUI-driven v.digit, the module has been never integrated into GIS Manager.

The last major part represents NVIZ (fig. 5), a tool for visualization in 2.5/3D supporting 3D raster
(voxel) and vector data.
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Fig. 4. Digitization tool in GRASS 6.3 – module v.digit.

Fig. 5. NVIZ, a module for visualization in 3D.
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2 Motivation for GUI development

As with many ongoing projects, the number of options, flags, and parameters has grown quickly, and
it has become inconvenient to remain in the command line environment (which was the only GRASS
option 10 years ago). The development of an interactive front end was therefore a very useful option.
The current GUI for GRASS is based on Tcl/Tk scripting language libraries [22].

GRASS shows high capability to analyze and manipulate data, and covers many application areas
in GIS projects. However, it shows an incomplete and scarcely intuitive graphical user interface, which
causes slow performance of many options such as layout map [14].

One of the main obstacles to its whole sale adoption by GIS professionals, are the issues of ease
of use and portability. A large number of GIS professionals use MS Windows and Macintosh operat-
ing systems. GRASS on these platforms is not without problems. Additionally, the user interface of
GRASS has lagged behind modern GUI, making it much harder to operate.

Besides of the native GUI also a few alternatives are available. One of them is JGRASS [4; 15]
which has been developed to bring GRASS up-to-date as it were, and facilitate its use among a larger
number of GIS professionals using a wider range of operating systems (especially MS Windows).
Another is QTGRASS, a simple prototype of GUI for GRASS based on QT graphical library, this
project seems to be currently not active. There is also project based on wxPython called wxGRASS,
detailed information in Spanish are available on-line [9].

2.1 The Goals

All native GUIs for GRASS GIS have been written in Tcl scripting language using Tk graphical toolkit
(including TCLTKGRASS, the latest GIS Manager, NVIZ or v.digit module user interface).

During the time, limitations of Tcl/Tk toolkit appeared to be fundamental for the future develop-
ment. This issue has been several times discussed in the GRASS developer mailing list [10]. At the
end has been decided to design new native GUI from the scratch using another graphical toolkit.

The main goals of GUI development for GRASS GIS are:

– Portability, enabling GRASS to be fully functional on the GNU/Linux, Unix, Mac-OS and MS
Windows operating systems.

– Ease of Use, providing all the features common to state of the art GIS applications.
– Extensibility, all tools integrated into GUI, including digitization, georectification, image classifi-

cation, etc.

The improved native GUI should help to bring GRASS to production environments as opposed to
the research environment. The GUI and improved scripting facility (focused on Python programming
language) will allow an application oriented user environment to be focused on the task which need
to be performed. The improved GUI should reduce the time of project implementation.

2.2 The graphical toolkit

The major players are QT [11], GTK [12] and wxWidgets [2; 17], the main requirements for graphical
toolkit:
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– Portability
– Native look and feel
– OpenGL widget available
– Powerful Python binding
– Performance and flexibility

Based on requirements has been decided to use wxWidgets. The wxWidgets library (formerly
known as wxWindows) is well-documented, well-known and widely used graphical toolkit. The cru-
cial characteristics connected to the GRASS GUI development:

– Powerful Python binding (know as wxPython).
– Uses native platform SDK (native look and feel), it means that a program compiled on MS Win-

dows will have the look and feel of a Windows program, and when compiled on a GNU/Linux
machine, it will get the look and feel of a Linux program.

– Free OpenGL widget (in contrast to QT) which is requested for future development (NVIZ re-
placement).

For the real development has been chosen Python cross-platform wrapper for the wxWidgets
which is known as wxPython [3; 20]. The choice to use Python as the operating platform for this
effort comes rather naturally when thinking about modularity, portability, extensibility and reliabil-
ity. Python as “easy-to-learn”, object oriented, currently “very popular” language should enable more
people actively contribute on the development in contrast to wxWidgets which works for C++ (or
Tcl/Tk used for the old GUI). Moreover wxPython is currently actively developed and maintained.

3 The development of wxPython-based GUI

GUI development based on wxPython graphical toolkit started in the end of 2006. The wxPython-
based GUI is planned to be default for GRASS 6.4 and GRASS 7. The current version of GRASS is
6.3 [13]. Detailed information are available on GRASS-Wiki page [8].

3.1 The Core GUI Components

The GUI components are implemented as Python modules. They handle all the interactions between
users and data. The core system components are:

– MapFrame (Python module mapdisp) which provides Map Display Window(s) to display a
map composition.

– GMFrame (Python module wxgui) which provides Layer Manager.
– AttributeManager (Python module dbm) for GRASS Attribute Table Manager, to browse,

select, modify attribute data linked to the vector map layers.
– Digit (Python module digit) which provides digitization (modifying vector map layers) abil-

ity integrated into GUI.
– Georectify (Python module georect) for integrated georectification tool.
– GrassGUIApp (Python module menuform) for GUI dialogs created on-the-fly based on XML

output from the GRASS parser.
– ProfileFrame (Python module profile) which provides integrated Profiling tool.
– HistFrame (Python module histogram) which provides histogramming of raster map layer.
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Fig. 6. Welcome to GRASS GIS – The start-up screen.

– GWizard (Python module location wizard) for creating new GRASS locations.

The GUI is composed by two main components:

– Layer Manager which allows users to run different GRASS modules from menu, includes map
layer management, integrated command-line prompt, and command output window.

– Map Display Window(s) which integrates basic tools for zooming, panning, data querying, decora-
tions (north arrows, barscale, etc.). This component replaces the old X11-based GRASS monitors.
The user is allowed to start various Map Display Windows during one session. The Layer Manager
registers started Map Display Windows using different tabs.

Layer Manager. The window frame can be visually split into four parts. In the top-most part of the
window is located menu bar which allows to run GRASS commands via graphical dialogs (e.g. see
fig. 11), the bottom-most part is occupied with interactive command line prompt which allows to run
GRASS modules by typing command including all parameters and flags. Below the menu bar is placed
toolbar. The rest of the window is occupied by notebook widget with two tabs. The first tab “Map layer
for each display” contains sub-tabs “Display x” for each started Map Display Window instance. Each
tab contains list of map layers which are rendered in the given Map Display Window. Properties of
map layers in the layer tree can be changed via contextual (pop-up) menu (see fig. 7). The second tab
“Command output” contains log area for output messages of commands launched from the menu or
from the command-line prompt (see fig. 8).

Map Display Window. This component contains toolbar area (set of toolbars), map canvas where a
map composition is displayed, and statusbar.
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Fig. 7. Layer Manager – Map layers tree tab.

Fig. 8. Layer Manager – Command output tab.

Except of “main” toolbar with basic tools like zooming, panning, data querying, etc. are available
optional toolbars dedicated to digitization (see fig. 9), under active development is also Georectifica-
tion tool.

Statusbar of Map Display Window has several modes (see fig. 10):

– coordinates: current coordinates
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Fig. 9. Map Display Window with additional toolbars.

– extent: region extent W-E-S-N
– geometry: window geometry (number of rows and cols, resolution in north-south and east-west

direction)
– map scale: approximate map scale (editable)

Fig. 10. Changing statusbar mode.

Graphical dialog. Dialogs are generated for all GRASS modules on-the-fly based on XML output
from the GRASS parser. Dialog for r.buffer module is presented on fig. 11.

3.2 Digitization tool

One of the key GUI components – Digitization tool – is currently under active development. The tool
is fully integrated into GUI and replaces the current Tcl/Tk-based v.digit module.

The functionality of v.digit module has been already re-implemented. Moreover new re-
quested1 features have been implemented:

1 Development of digitization tool is supported by the GFOSS-TN project (GFOSS Migration Project, Comune di Trento).
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Fig. 11. GUI dialog for r.buffer module.

– Display vertices, animate movement of vector object by mouse
– Select vector objects by box
– Select vector objects by query (line length, dangles)
– Snap to node or vertex
– Snap to the vector objects (node or vertex) from background vector map layer(s)
– Unsplit (remove pseudo-nodes) – merge selected vector lines
– Connect selected lines (undershooted lines)
– Break selected lines
– Copy vector objects from background vector map layer(s)
– Z bulk-labeling (automated z-coordinate assignment to selected vector lines, e.g. vector con-

tours). This functionality was available in old CLI-driven v.digit in GRASS 5.0, never re-
implemented in GUI-driven v.digit module.

– and others. . .

On fig. 12 and 13 is presented one example: first, all vector lines shorter than 1000 map units were
selected (highlighted in purple color) and then deleted.

Another example is shown of fig. 14 and 15: copying vector objects from selected background
vector map layer.

3.3 The future development

This section describes some of functionality which is planned to be implemented and integrated into
the GUI.

Besides Digitization tool, another important GUI component – Georectification tool – is currently
being developed by Michael Barton.

Many other components or sub-components have to implemented or improved including interac-
tive command-line prompt – e.g. module search engine (to allow users to find a GRASS module based
on the given keywords), location wizard, etc.



GIS Ostrava 2008 Ostrava 27.-30.1.2008

Fig. 12. Digitization tool – Select all vector lines shorter then the given threshold value.

Fig. 13. Digitization tool – Delete all selected vector objects.
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Fig. 14. Digitization tool – Select vector objects from background vector map layer.

Fig. 15. Digitization tool – Copy selected features from background vector map layer.
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Fig. 16. Attribute Table Manager in action.

Future development of Map Display Window component will be focused on the integration of
OpenGL [5]. OpenGL is a vendor neutral window system independent 3D rendering application pro-
gramming interface (API) that provides onscreen and offscreen access to the graphics hardware. All
OpenGL applications produce consistent visual display results on any OpenGL API-complaint hard-
ware, regardless of operating system or windowing system. For this purpose PyOpenGL [6] will be
used. In the result, Map Display Window will support 3D rendering including 3D raster (voxels) and
vector data. Functionality will be based on the current NVIZ module (fig. 5).

One of the features which would be good to implemented is on-the-fly projection, which auto-
matically converts and overlays spatial data in different projections. Currently the user is forced to
re-project datasets in order to overlay and view multiple layers manually.

Another issue is to rewrite module i.class dedicated to supervised image classification. This
module is X11-driver based and cannot be integrated into the GUI. Moreover it lacks some useful
features, e.g. report or save statistics for previously defined training areas (regions of interest). The
lack of ability to view previously defined training areas during interactive classification is a major
limitation of the module.

3.4 Map Layout

The tools for creating hardcopy maps (map layout) are limited in GRASS because its focus on model-
ing and spatial analysis [19]. GRASS gives the user ability to add only a very simple and standardized
legend, north arrow and scale (modules like d.barscale, d.legend) to display to the graphics
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monitor and then export the display to an external image file such as a png. These map features are
very basic and cannot be customized.

GRASS also contains specialized module for hardcopy map outputs ps.map which works non-
interactively. The user is forced to prepare the configuration file for ps.map manually. This can be
very time consuming task especially for non-experienced user. The module has no graphical front end
which would enable users to compose map layout interactively without need to create the configura-
tion file. Experimental prototype of GUI for ps.map has been created by Jáchym Čepický, available
at http://193.84.38.2/˜jachym/index.py?cat=gpsmap.

“Map composer”, a tool for hardcopy map outputs is one of the fundamental features which need
to be implemented in the wxPython-based GUI.

There are basically two ways of implementation:

– To design graphical front-end for ps.map module. The ps.map is a cartographic mapping pro-
gram for producing high quality hardcopy maps in PostScript format. Mapping instructions that
describes the various spatial and textual information to be printed must be store in a special config-
uration file. The GUI for ps.map would allow the user to prepare map layout (i.e. configuration
file) interactively.
It would require first of all to design special graphical front-end for ps.map module and also
various improvements of ps.map.

– To improve or basically rewrite cartographic GRASS modules such d.barscale, d.legend
or d.vect, etc. In that case Map Display Window would be possible to use for map layout
preparation. Then content of map canvas would be simply exported to Postscript format using
GRASS PS driver or wxWidgets wxPostScriptDC functionality. Or instead of Postscript to other
formats such png, pdf or svg.

It is seems to be more effective to improved or rewrite basic cartographic modules available in
GRASS that to design special GUI for ps.map including requested improvements of this module.
Also d.vect module will be rewritten to support line styles, area fill patterns, etc. These changes are
connected to the planned improvements in display architecture for GRASS 7 (transparency, floating-
point coordinates, etc.).

Another component which is planned to be included is Map Symbol Editor. The goal is to allow
users to prepare simple cartographic outputs comparable e.g. with ArcGIS map layout functionality.

4 Conclusion

The decision to replace currently used Tcl/Tk with wxPython graphical toolkit is crucial for the future
GRASS GUI development. WxPython is one of the most active and maintained wrappers for the
wxWidgets library. Moreover it supports more or less all features which are requested for the current
GUI development (including fundamental OpenGL widget).

WxPython-based GUI is being actively developed by several people. It seems that Python as a
”easy-to-learn” programming language enables more people to actively contribute on the develop-
ment process (in comparison with Tcl programming language).

http://193.84.38.2/~jachym/index.py?cat=gpsmap
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The improvements (described in the paper or planned) in graphical user interface could help to
bring more GIS users and professionals into the GRASS community, in turn leading to further ad-
vances in GRASS and GIS in general and ultimately benefiting the public.
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