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Abstract

Surface and its analyses are important topic in geosciences. Surface models are obtained from data with 
uncertainty in both position and attribute. The procedure which is used for modelling the surface from the 
original data results in biased outputs. Fuzzy set theory and fuzzy logic dispose of methods and tools for  
modelling surfaces based on biased input data. Especially fuzzy numbers are suited for modelling surfaces 
with uncertainty.

Kriging has been proved to be one of the best interpolation methods and it allows calculation of the standard  
deviation of the output surface. Based on those inputs, fuzzy surface can be constructed. The fuzzy-surface 
represents each point of the grid as a fuzzy number. Triangular and trapezoidal fuzzy numbers are the most  
common ones that are used in applications because of their easy implementation. The kernel of the fuzzy 
number is the result given by the kriging method and the support of the fuzzy number is calculated from the  
standard deviation of the kriging method. The output surface represents the interpolation of the data with the 
uncertainty that was present in the original data as well as the uncertainty that arises from the interpolation  
procedure. The aim of this paper is the creation of fuzzy surface based on the results of kriging calculation. 

Fuzzy surface can be further used in geosciences for analyses of situations where the uncertainty of the  
result is important for decision making. Knowledge of uncertainty in calculations also allows much better risk  
management and provides more information for better crisis management.                                                  
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INTRODUCTION

All types of surfaces and their analyses have an important role in geosciences [1]. Often they are used as  
error free models even if significant errors and uncertainty can be and usually is present in those surfaces. 
Most of the time surfaces are created from data that do not cover the whole area of interest. Interpolation 
methods are used to create surface from discrete data. Creation of surface through different interpolation 
methods can lead to significantly different results. For necessary evaluation of the precision and quality of  
the result  surface there are developed several  methods that  are widely used. These techniques include 
calculations of different kinds of errors and indexes that show surface quality. The most common known and  
used method is calculation of root mean square error (RMSE), next are absolute error and Hammock index 
[1]. Currently the uncertainty in the surface estimation is a topic that has the same importance as the surface 
quality. There are several ways how the uncertainty is introduced to the surface; however two of them are 
the most important: uncertainty in dataset and uncertainty in the interpolation process [2]. There exists also  
several methods for handling and propagation of uncertainty such as interval arithmetic, Bayesian statistic, 
Dempsey-Schaffer methods and fuzzy sets and fuzzy logic [3,4].
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Fuzzy sets and logic become widely used theory for handling uncertainty in various disciplines. Most likely it  
is because of relatively simple concept and the fact that it is very close to the style of human thinking. People  
unlike machines or mathematical theories do not  think in exact values but rather in vague terms. Fuzzy 
theory allowed using of vague terms in reasoning as well as in calculations. Because of this fuzzy theory  
became one of the most popular theories for handling uncertainty.

This contribution is related to the approach for creating fuzzy surfaces from the results of interpolation of 
input  data  by  kriging  method.  Existing  methods  used  in  geosciences  for  the  interpolation  have  been 
extended for use on fuzzy data, so there exists fuzzy IDW, fuzzy spline and fuzzy kriging methods  [2,5]. 
However these methods are not yet implemented in GIS or in mathematical software such as R, Octave or  
Scilab. Also named methods are intended for use on fuzzy input data. In practical applications such data are  
not common. But there can be utilized methods of existing techniques of estimation provided by kriging 
algorithm and combined with expert opinion to create a fuzzy surface.

FUZZY SET THEORY

Nowadays it is well known that uncertainty is present in almost every information [3]. According to [3,6] and 
[7] a lot of phenomena are not statistical by nature and thus probability theory is not well suited for handling  
their uncertainty. Fuzzy set theory and fuzzy logic were developed as tools for analytical solving of problems 
that are not suited for probability theory and classic logic [8]. Main purpose of fuzzy theory can be described 
as precise description of imprecision (or vague) objects or phenomena [9]. Today fuzzy theory is used in 
wide area of disciplines for handling different data and processes that contain uncertainty.

Fuzzy set theory and fuzzy logic were first introduced by L. A. Zadeh in 1965 [8]. A fuzzy set is a collection of 
ordered pairs of objects and their membership grades. According to [2] the fuzzy set is defined as:

(1)

Where Ã denotes a fuzzy set, U is a universe on which Ã is defined, x is object from U and μÃ(x) is a degree 
membership of x to the fuzzy set Ã. Such fuzzy set is characterized by the membership function (fÃ (x)) which 
associates each x to its degree of membership – number from interval [0,1]. The closer is the membership 
value to the 1 the more is the object part of the fuzzy set. Value 1 indicates complete membership to the set  
and value 0 means that the object does not belong to the set at all. Fuzzy set theory is generalization of  
classic (crisp) set theory, where  x  ∈ A or  x  ∉ A as those are the extreme cases of membership degrees 
associated with values of 1 and 0 [fig.1]. Fuzzy logic utilizes similar concept using degrees of truth as a 
measure of correctness of the predicament. Some important terms connected with fuzzy set theory are:

• kernel – set of all x where μÃ(x) = 1

• support – set of all x where μÃ(x) > 1

• α-cut – set of all x where  μÃ(x) ≥ α for α  [0,1]∈

Fig. 1. Crisp set and fuzzy set
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It is important to note, that all α-cuts, which special cases are both kernel and support, are crisp sets. This is 
important for constructing and calculating with fuzzy sets. For details about fuzzy set theory and fuzzy logic  
see [8].

Fuzzy number

Fuzzy numbers are considered as special cases of fuzzy sets. Fuzzy number is normalized convex fuzzy set  
used to represent vague value or number. Different types of fuzzy numbers exist i.e. Gaussian, Triangular,  
Trapezoidal, Piecewise Linear, etc. [fig.2] [2, 5, 10, 14, 16]. Another terminology uses notion fuzzy number 
for triangular fuzzy number and fuzzy interval for trapezoidal fuzzy number [18, 19, 20]. Because of simple 
implementation of both definition and calculations the triangular and trapezoidal fuzzy numbers are the most 
common in geosciences applications [2]. 

Fig. 2. Fuzzy numbers a) triangular b) trapezoidal c) piecewise linear

Basic triangular fuzzy number is often defined as a triplet [a-,a0,a+] in the same way the trapezoidal number 
can be defined as a quaternion  [a-,a0-,a0+,a+].  Piecewise linear numbers can be defined by ordered pair 
values and their membership value or for easier computational treatment as set of  α-cuts. Each α-cut is 
represented by interval which allows easier computational operations with such fuzzy numbers [10].

Fuzzy numbers can be used for calculations since all arithmetic operations can be defined for them through  
the extension principle [7]. However using extension principle was proven to be computationally complicated 
and methods for calculations with  fuzzy numbers using  α-cuts were developed [10].  Fuzzy arithmetic is 
important since it allows propagation of fuzzy numbers through any mathematical operation. 

Fuzzy surface

As a fuzzy surface can be defined surface that instead of using crisp values uses fuzzy numbers. Such 
surface has included uncertainty since for each location is possible range of values. This is consistent with 
so called possibilistic fuzzy set theory [3,7].

CONVERTING RESULTS OF KRIGING TO FUZZY SURFACE

Kriging

Kriging is a set  of  geostatistical  methods used to predict  value of  variable  at  location where it  was not 
measured from the set of nearby points where the value of variable is known. Input for kriging is so called 
random field, that presents points where the variable was measured. For interpolation over the whole area of 
interest the regularly spaced grid of points is created and the prediction is made for each of those points [1].  
Algorithm used by kriging is a linear least square estimator because it minimizes variance of the prediction 
error. 

There are several types of kriging and the most common are simple, ordinary and universal kriging. Each of  
these methods have different assumptions: simple kriging presumes known constant trend of the variable, 
ordinary kriging presumes unknown constant trend and universal  kriging assumes polynomial  trend [11]. 
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Before choosing which method is the most suitable to use statistical analysis that searches for trends in data 
have to be performed. However universal kriging seems to be the best choice since most of the geographical  
data contain some sort of trend [5].

Generally the universal kriging is defined [11]:

(2)

Z(x) is estimation of variable Z at the point x, m(x) is a structural component associated with the trend and 
ε(m) is  regionalized  variable  which  is  stochastic  and  spatially  correlated.  Universal  kriging  estimator  is 
defined:

(3)

where  N is number of neighbors and  λ is a vector of kriging coefficients. Results of universal kriging are 
obtained after minimalization of function:

(4)

in the equation γ is a vector of variogram values, μ is vector of Lagrange multipliers and f(x) is a vector of 
values at sampled locations. 

Kriging Standard Error

Same as many other statistical methods kriging allows besides estimation of value that have to be predicted 
also estimation of standard error of this prediction.

In [12] and [5] was proven that kriging standard error has no direct connection to the value that kriging is  
predicting, while the only connection is to the distance of the neighbour measure points. That is consistent  
with the kriging definition. The uncertainty (standard error) is higher if  the points used for prediction are 
further away from the prediction location. If the neighbour points are close to the point of estimation the  
uncertainty is smaller. If the measurement points are located in regular grid the standard error prediction  
repeats for each part of the grid without any connection to the local variance of data in the grid [12] [fig.3].

Fig. 3. Universal kriging standard error for regular grid of input data (source [12]) 

The value of standard error depends on the type of semivariogram model used for kriging.  For different 
semivariograms the prediction of standard errors should look different, values vary significantly however the 
general trend that standard error is dependent on distance to measurement points is still significant [12]. 
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Fuzzification of kriging standard error

It was defined that the standard error of kriging has no direct connection to the data since it is only function of 
distance to  sampling points and covariance function [13].  This  provides important  information about  the 
amount of uncertainty in the predicted surface, however this information is still not enough to allow a direct 
fuzzification of the predicted value to create a fuzzy surface.

All interpolating methods are based on presumption that value of interpolated phenomena is exactly known 
at  set  of  exact  locations.  The resulting surface is  then often treated as containing no uncertainty  in its 
predicted values [2]. Several studies suggested how information sampled at discrete locations should be 
fuzzified for further  analytical  procession in the form of  surface that  contains uncertainty.  In [14]  where 
contour lines are used as a data source it is suggested that in 90% of cases the error in the input data should  
be smaller than the half of contour lines interval.  This error is directly propagated from input data to the 
surface that was created. Based on this fact triangular number is constructed for each grid cell of the surface 
according to the equation:

(5)

xij is predicted value of the surface at coordinates ij and ci is a contour interval. The output fuzzy number has 
support range equal to the half of contour lines interval.

Study [15] suggest using value of standard error - σ 0.2, 0.5, 1 and 2 meters as optimistic, two realistic and 
pessimist presumptions of surface vertical error created from contours lines with density of 1 meter. So in  
this attitude 95% of data are contained in interval denoted by:

(6)

Another source [16] suggests creating of a triangular fuzzy number from the crisp input data by this formula:

(7)

Where ε is the error of the measurement. This variant is based on uncertainty in data before the interpolation  
process,  and the uncertainty  is  equal  to  the  maximal  possible  error  of  measurement.  The interpolation 
process is repeated three times to create surfaces: a-,a0,a+. In such case the surface a- represents the lowest 
possible surface of variable to predict,  a0 the most possible one and a+ the highest possible surface.

The first and second study show similarities as the formulation about 90% of data with error lower then half  
of the interval size is close match with σ 0.2 for 1 meter density of contour lines, in this case 95% of data 
has error lower then 40% of the interval size. In second study this serves as an optimistic presumption.

Compromise solution from those studies is to assume that the maximal error in the surface estimation is  
equal to the measurement error in the input data. This only stands for estimations made by such algorithms 
that never exceeds the data or at least does not exceed them by much. So this presumption can not be used  
for spline without tension because spline algorithm tends to exceed the data range in many situations but 
spline with tension does not exceed the range of data so this presumption can be made for this algorithm. 
Based on these three studies can be identified the assumption that results of kriging prediction have the 
maximal possible error equal to the measure precision. 

According to the [15] and [16] when assumption about error in data can be made it can be used for the  
creation of fuzzy surface. However the outlined principle does not incorporate uncertainty in the surface 
prediction, the assumption of uniformly distributed uncertainty over the surface is made. However kriging  
provides  information  about  the  distribution  of  uncertainty  over  the  predicted  surface.  We  use  feature 
normalization to rescale the kriging standard error to interval of values [0,1]. Values of 1 indicate the areas  
with high uncertainty in estimation of the surface while values of 0 indicate areas with low uncertainty. 

Based on these presumptions there can be created fuzzy surface that  has at  each point  fuzzy number 
constructed by this equation:

(8)
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where  Ed is a minimal estimation error that we assume,  Ee is an error that arise from the uncertainty of 
prediction.  εij denotes the normalized standard error of kriging at location ij. Together Ed plus Ee should be 
equal to the half of maximal possible error in input data, so that the range of the support of the fuzzy number  
is equal to the maximal possible error.

CASE STUDY – RUSAVSKÁ HORNATINA MOUNTAINS

Area  Rusavská hornatina mountains is located on the east side of Czech republic [fig.4].  It  is  a part of  
Hostýnské vrchy mountains. The area of interest is a square of extent 4x4 kilometres. Input data set were 
contour lines with density of 5 meters. This quality of altitude data is usual in the Czech Republic.

Fig. 4. Location of the area of interest

Model area dataset was previously studied by [17]. In this study optimal interpolating algorithm for several 
areas  of  interest  were  determined.  For  Rusavská  hornatina  mountains  the  best  algorithm  with  best  
evaluation was universal kriging. As the most correct setting kriging with second order trend removal with  
spherical  theoretical  semivariogram  with  20  neighbours  was  identified.  The  reason  for  using  spherical  
semivariogram  is  the  need  of  preserving  the  local  variability  of  the  surface.  Spherical  or  exponential 
semivariograms fulfil  this need while  gaussian preserves more of global trend then local  variability.  The  
surface was first created for area 4.1x4.1 km and later just area of interest of size 4x4 km was extracted to 
avoid errors that occur during interpolation process near the edges of data.

Fig. 5. Prediction of the terrain elevation
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In previous chapter number of studies showing that the actual value of standard error does not have direct  
connection to the prediction values. More likely it shows the spatial distribution of the error prediction over 
the estimated surface. While the standard error of kriging has metrics it is not connected to the metrics of the  
prediction at least not in the sense of classic statistical description [12]. That means that it can not be used 
directly as a value of standard error to predict the range of possible values but it can be used as a metrics of 
uncertainty of the surface.

Fig. 6. Normalized standard error of kriging estimation

It is possible to use standard error in the estimated surface to point out areas that have higher uncertainty in 
estimation [fig.6].  Values of  standard error  have normal  distribution so their  normalization can be done 
through linear scaling to unit range by the equation:

(9)

where xn is normalized value of  x,  X is vector of all  x. Then fuzzification of the result is realized by use of 
equation [8]. As Ed value of 0.5 meter was chosen and Ee is equal to 0.75 meters, together this gives range of 
the fuzzy number 2.5 meters as the worst case situation.  Result can be visualized in 3D form, where the axis 
x,y corresponds to the location. Axis z shows estimated value at location which is also the value that has 
membership degree equal to 1 in the resulting fuzzy surface. Colour shows the maximal possible error in 
estimation of value at each location [fig.7].
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Fig. 7. Small area of 3D visualization showing input points and their relation to the resulting uncertainty

(units are meters)

DISCUSSION

With the development of modern technologies, measurements are more precise and the effort of scientists is 
to make the presentation of these data in the most precise form. Therefore it is important in addition to the 
actual  results  also present  the accuracy of  this  result.  In  the field  of  surface modelling it  is  mainly  the 
uncertainty in the interpolation process.  Current  technologies do not allow efficient visualization of  fuzzy 
surfaces, so it is necessary to find suitable alternatives. Possible way how to provide the most accurate  
information is presenting of information of surface confidence or possible erroneous of surface based on 
fuzzy model. 

Presentation of possible uncertainty of the model is very important in every discipline such as monitoring of  
landslides.  If  the information is low quality because the derived model has a high uncertainty proposed 
measure can be completely inappropriate. This can occur in a situation where the points in the specific area 
did  not  occur  at  all  and  the  surface  model  is  only  the  result  of  interpolation  of  points  more  distant.  
Conversely, if there are many entry points on the measured site, the potential uncertainty of the model is low  
and the surface model can be used for detailed studies. Example in [fig.7] presents a situation where are  
entry points of surface model in a large number and perhaps the model uncertainty is very low in this area 
and very far can be location with very low number of entry points and the model uncertainty can by high and  
possible error can reach the maximum values.

In various models of natural processes there occurs uncertainty or vagueness arising from the very nature of  
the monitored phenomenon. Therefore it  is  very important  to avoid bringing an error into other possible  
calculation. This error can be based on the fact that the model is considered as error free. Such an error 
could negatively affect the results of each study.

CONCLUSION

The proposed method allows creation of fuzzy surface containing uncertainty based on output of kriging 
interpolation method and expert knowledge. Creation of such surface is not computationally demanding and 
all  the necessary methods are implemented in common GIS software. The output  fuzzy surface can be 
further used in operations where the calculation of uncertainty is an important part of the decision making 
process. Derivative characteristics can be created from such surface and uncertainty of the surface can be  
propagated to these derivatives. This allows much better treatment of uncertainty during following analysis of  
both surface and its derivatives.
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