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Abstract 

Three Digital Elevation Models (DEMs) derived from satellite data have been evaluated. These are the 

SRTM90 and SRTM25 derived from the Shuttle Radar Topography Mission (SRTM) and the Global Digital 

Elevation Model Version 2 (GDEMV2) computed with data of the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER). The elevations obtained by the Geoscience Laser Altimeter System 

(GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat) are used to evaluate the vertical 

accuracy of the aforementioned DEMs. Elevation values are extracted at GLAS footprint centre coordinates. 

The study area is defined by the external borders of the federal state of Baden-Wuerttemberg, located in 

south-western Germany. An overall amount of 14615 elevation samples have been analyzed, where altitude 

information could be derived from all datasets. In addition to the spatial condition of intersecting height 

information, the heights of GLAS data product (Product GLA14, Version 31) were filtered for unsuitable 

elevation values. For evaluating the influence of different land use types, the land use map provided by the 

Office for the Environment, Measurements and Nature Conservation of Baden-Württemberg (LUBW) was 

used. To estimate the effect on elevation differences by surface slope, the latter was derived from SRTM25 

data. Including all 14615 geolocations, results indicate the SRTM90 to have the best correlation with the 

ICESat heights. Mean differences and standard deviations between ICESat heights and the other elevation 

sources are: SRTM90 0.4m/10.1, SRTM25 -0.9m/7.8, GDEMV2 0.8m/9.3. Concerning absolute height 

differences the computed mean values and standard deviations are: SRTM90 6.5m/7.8, SRTM25 5.2m/6.0 

and GDEMV2 6.9m/6.3. The slightest increase in mean deviation with increasing terrain slope class was 

observed in the GDEMV2 dataset. 
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INTRODUCTION 

Digital Surface Models (DEM) by remotely sensed data are often the solely height information for remote 

areas. Besides the commercial high quality DEMs, produced by land survey offices or private companies, the 

freely available DEMs are widely in use. They are utilized for topographic correction of satellite images, 

calculation of slope or aspect for environmental analyses or construction planning. Different kinds of DEM’s 

by satellite remotely sensed data do exist. Small scale DEMs with a ground resolution of few km² down to 

high resolution DEMs of 25m² ground resolution. When asked about the most suitable DEM for a project, it is 

important to know the vertical accuracy. We will evaluate three common elevation sources that have been 

produced by satellite data. Two DEMs by the Shuttle Radar Topography Mission (SRTM) with a ground 

resolution of approximately 90m/25m and the ASTER Global Digital Elevation Model Version 2 (GDEMV2) 

will be evaluated. The Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land 

Elevation Satellite (ICESat) provides well-suited elevation measurements for evaluating these continental 

DEMs [1]. Instead of the contiguous DEMs, ICESat elevation information is provided more sparsely in a 

stripe scanning pattern, but of approved highly precise elevation measurements [1, 2, 3, 4, 5].  

For different geographic regions and DEM sources a variety of accuracy assessments have been made. [1] 

validated elevations from the SRTM mission by ICESat elevations. They found a mean of -0.6m with a 

standard deviation of 3.46 for low relief and tree cover. Accuracy is deteriorated with increasing slope or 
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Fig.1 Sketchy illustration of forest 
canopy penetration by GLAS (shown 
elevation determination is one of seven 
methods), GDEM, SRTM90 and 
SRTM25 due to different wavelengths 
used by remote sensors. 

increasing vegetation cover. For a study area in the Tibetan 

Plateau [6] identified a strong correlation of SRTM elevations 

with ICESat elevations. An assessment of ASTER GDEM using 

comparison with SRTM and ICESat data was conducted by [7] 

for central China. An investigation of ASTER GDEM versus 

SRTM was carried out by [8]. They also used ICESat data for 

absolute reference. The second release (version 2) of ASTER 

GDEM was also evaluated against ICESat elevation 

measurements by [9].  

While height differences between single data have already been 

examined by other authors, until now they have not been 

evaluated for a complete large area. Besides this, we want to 

examine the influence of surface slope and the effect of different 

land use classes. Since the effect of slope on GLAS height 

measurements is well known [10], we want examine which of 

the tested DEMs is most sensitive for sloped terrain. 

Because of the effects of different wavelengths on elevation computation and canopy penetration (Fig. 1), it 

is assumed that GLAS surface elevation, compared to the three other DEM heights, will be lower for forested 

and urban areas. The result of a subtraction of DEM values from ICESat heights should therefore be 

negative. 

 

STUDY AREA AND DATA 

Study Area  

The extent of the study area for this investigation is the external boarder of the federal state Baden-

Wuerttemberg of Germany (Fig. 2). The total land area of 35748km² is covered by mountain as well as by flat 

regions. The eastern part is built by the plain of the Upper Rhine valley. From this valley to the west the 

slopes of the Black Forest low mountain range arise. Further west the south-western German cuesta forms a 

series of plains separated by steep slopes.  

Data 

The data collection for the SRTM was started in the 

year 2000 and comprised an eleven day mission 

[10]. The shuttle carried two different synthetic 

aperture radar systems. One of these radar 

systems operated within C-band and the other 

within X-band wavelengths (5.6cm and 3.1cm) [11]. 

The outcome of that mission is a worldwide 

topographic dataset with near-global coverage. The 

first release of the C-band derived elevation 

products was in the year 2003 with a degraded 

resolution of 3-arc seconds outside the US. The 

Consortium for Spatial Information (CGIAR-CSI) of 

the Consultative Group for International Agricultural 

Research (CGIAR) provides post processed DEM 

datasets of 3-arc seconds resolution (~ 90m). This 

product was used in Version 4 within this study. 

Data is delivered in geographic projection of 

WGS84 and vertical datum EGM96.  

 
 

Fig.2: Extent of the federal state Baden-
Württemberg with circular footprints of ICESat 
GLAS ground tracks (adjusted data) and available 
SRTM25 data. 



GIS Ostrava 2012 - Surface models for geosciences January 23. – 25., 2012, Ostrava 

 The DEM derived from the X-band radar system is under charge of the German Aerospace Center 

(Deutsches Zentrum für Luft- und Raumfahrt, DLR) and the Italian Space Agency (ASI) [12]. This SRTM25 

was made available for scientific purposes from end of May 2011 by DLR. This product was downloaded 

with a geographic projection of WGS84 and WGS84 ellipsoidal heights. It has a better ground resolution of 

approximately 25m x 25m compared to the SRTM90, but only exists in a global stripe pattern. Figure 2 

illustrates the coverage by SRTM25 elevation data at the study area. 

The ASTER GDEM data is property of the Japanese Ministry of Economy, Trade, and Industry (METI) and 

the United States National Aeronautics and Space Administration (NASA) [13]. Elevations are determined by 

an automated stereo-correlating algorithm. From 17th October 2011 on, the second version of ASTER 

GDEM is available. With a ground resolution of 30m x 30m, the data was obtained from Japan’s Ground 

Data System. The GDEMV2 elevation product is delivered in the same projection and vertical datum as the 

SRTM90 (WGS84/EGM96). 

The ICESat was lunched on 12
th
 January 2003. The GLAS instrument on board ICESat had three lasers with 

a wavelength of 1064nm for the altimetry measurements. To extend the mission life time, the operating 

period of the three lasers was non-permanent. The measurement campaigns lasted between 33 to 56 days, 

several times per year. The last operational period ended on 11
th
 October 2009. Footprint size of the lasers 

is about 70m in diameter with a spacing of about 170m along record path. This varies with each laser period 

[14]. Hence the data distribution is point wise and no contiguous full coverage for the study site is available 

(Fig. 2). These ICESat GLAS data products are distributed by the National Snow and Ice Data Centre 

(NSIDC). There are 15 different standard data products, GLA01 to GLA15. The GLAS/ICESat L2 Global 

Land Surface Altimetry Data product GLA14 was used for this study. The most current two releases of NASA 

ICESat GLAS data products are Release-31 and Release-33. Because only Release-31 is available for all 

laser campaigns, it was used for this study [15]. The data is provided in scaled integer binary format and can 

be ordered through the ICESat/GLAS Data Subsetter provided by NSIDC [16]. Due to the reference to the 

TOPEX/Poseidon ellipsoid and EGM96 geoid, the coordinates need to be further processed.  

The land use map applied by the Office for the Environment, Measurements and Nature Conservation of 

Baden-Württemberg (LUBW) contains 16 land use classes with a spatial resolution of 30mx30m [17]. Land 

use classes are: (1) urban dense, (2) urban sparsely, (3) industrial, (4) arable land, (5) wine/orchard, (6) 

mixed orchard, (7) fallow, (8) without vegetation, (9) intensive pasture, (10) extensive pasture, (11) 

coniferous, (12) deciduous, (13) mixed forest, (14) wind fall, (15) water, (16) wetland. The land use 

classification is based on Landsat images, captured during the year 2000.  

Table 1 summarizes the elevation data sources, their specific geographic projection, the vertical reference 

system and the ground resolutions.  

 

 

METHODOLOGY 

The first step comprises a thorough pre-processing of ICESat data. Data from GLAS instrument is stored 

with unique record indexes where each record index contains 40 laser shots. Some data attributes are 

stored for the complete record index and others are recorded for each laser shot [18]. Variable names are 

indicated by unique flags of which the NSIDC provides an altimetry data dictionary with a detailed description 

Name Projection Ground Resolution 

SRTM90 WGS84/EGM96 90x90m 

SRTM25 WGS84/WGS84 25x25m 

GDEMV2 WGS84/EGM96 30x30m 

ICESat\GLAS TOPEX-Poseidon point (x, y, z) 

Table 1 Summary of elevation sources 
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[18]. The GLAS land surface elevations are determined by several methods. The method used for each 

specific waveform is indicated by the ‘i_ElvFlg’ flag. According to this flag the elevation measurements used 

in this study have been calculated by the centroid of the received pulse between signal begin and signal end, 

defined for alternate parameterization (Fig.1). For further investigations we converted the ICESat GLA14 

product from binary to ASCII format. NSIDC offers the tool ‘IDL reader’ to read data and print all the variables 

in ASCII format [19]. Since output data structure is not instantly suitable to transfer the records to a data 

base or preferred table format, order of ASCII data sets have been transposed and new columns with 

derived values were added. The necessary height transformation from TOPEX/Poseidon to WGS ellipsoidal 

heights was of importance for this study. A subtraction of geoid undulation values according to [20] was 

realised. In contrast to [20] we did not use a fixed height offset between TOPEX/Poseidon and WGS 

ellipsoids of 0.7m, but calculated the offset by the empirically derived formula provided by [21]. Geoid 

undulation is already given in GLA14 products; however it is only stored for the first and last shot for each 

record index. We calculated the undulation value for each shot, by linear interpolation between the first and 

last recorded value. Additional to the height transformation, we reduced the amount of records by filtering 

invalid or critical values by the following criteria: 

a) Elevation use flag ‘i_ElvuseFlg’ indicating invalid elevations   

b) Saturation correction flag ‘i_satCorrFlg’ indicating invalid correction value 

c) Range offset quality flag ‘i_rng_UQF’ indicating invalid values 

d) Cloud contamination flag ‘i_FRir_qaFlag’ indicating presence of clouds 

e) Difference of GLAS height to high resolution DEM ‘i_DEM_hires_elv’ is more than 100m. 

 

We stored all of the information provided in the GLA14 product in a database, but only latitude, longitude and 

the transformed height values were used for further evaluation in that study. A total of 14615 geolocations do 

comply with the requirements of data quality and existing elevation information of all DEMs inside the area 

under investigation. 

The second step requires the transformation of datasets into a unique reference system. The elevation of the 

SRTM25 dataset refers to the WGS84 ellipsoid. As we want to calculate height differences based on 

EGM96, we transformed these values. The National Geospatial-Intelligence Agency (NGA) and NASA 

provide a WGS84 EGM96 15-Minute Geoid Height File and Coefficient File, as well a FORTAN program, 

named F77, to calculate undulation based on geographic coordinates [22]. For the centre coordinates of 

each SRTM25 pixel, the undulation was computed by the aforementioned software and finally subtracted 

from original values.  

Height transformation was not necessary for the SRTM90 and GDEMV2 since they are already delivered in 

EGM96. Coordinate systems have been changed from geographic to map projection WGS 84 /UTM zone 

32N. For the land use map a transformation from DHDN / Gauss-Krueger Zone 3 to UTM 32N WGS84 was 

computed within a Geographic Information System (GIS) using an equation based seven-parameter 

transformation. 

In the third step, the ICESat footprint centre coordinates were used as template to extract elevation and land 

use information from the other data sources. We did not account for the footprint size or its shape. As well 

we did not spatially interpolate the raster values according to the location of the GLAS footprint centre inside 

each corresponding pixel. Finally the DEM values were subtracted from corresponding ICESat elevations.   

At the time of this study there was no better possibility to get surface slope information, then to derive it from 

one of the available DEMs. We decided to take the newly released SRTM25, to calculate surface slope, 

being aware of the possible autocorrelation of results. Slope values have been grouped into different 

intervals. They are from 0° to 20° degrees in the range of one degree per interval, between 20° and 65° they 

are separated in 5° each interval. 
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Fig. 3 (a) SRTM90 to GLAS elevation difference by land use (b) SRTM25 to GLAS elevation difference by land 

use (c) GDEMV2 to GLAS elevation difference by land use (d) Surface slope distribution inside land use 

classes. Land use classes: (1) urban dense, (2) urban sparsely, (3) industrial, (4) arable land, (5) wine/ orchard, 

(6) mixed orchard, (7) fallow, (8) without vegetation, (9) intensive pasture, (10) extensive pasture, (11) 

coniferous, (12) deciduous, (13) mixed forest, (14) wind fall, (15) water, (16) wetland 

RESULTS 

The 14615 sample locations, extracted at centre coordinates of ICESat footprints, are distributed within 

different land use classes. Within dense urban areas (1) 23 intersecting height values were observed, urban 

sparsely populated areas (2) 1085, (3) industrial areas 116, (4) arable land 3391, (5) wine/orchard 378, (6) 

mixed orchard 310, (7) fallow 18, (8) without vegetation 20, (9) intensive pasture 419, (10) extensive pasture 

2911, (11) coniferous 1890, (12) deciduous 1765, (13) mixed forest 2057, (14) wind fall 143, (15) water 50  

and wetland (16) 39. 

Elevation differences for all locations, without any further data manipulation, have a mean value 0.4m with a 

RMSE 10.1 for SRTM90, -0.9m with RMSE 7.8 for SRTM25 and 0.8m with RMSE 9.3m for the GDEMV2 

data set. Mean values and RMSE calculated with absolute values are 6.5m/7.8 for SRTM90, 5.2m/6.0 for 

SRTM25 and 6.9m/6.3 for GDEMV2. Figure 3 shows four different data plots. The median of each class is 

represented by the horizontal line inside each box. The dimension of each box indicates inner quartile range 

(IQR) of the first and third quartile. The upper and lower whiskers are calculated by multiplying the IQR by 

1.5. This value is subtracted afterwards from the first quartile. The next higher value of the dataset 

determines lower whisker line. The upper whisker is calculated by starting from the third quartile. All data 

values, which exceed the whiskers, are plotted as dot. In figure 3 a-c, the height differences per land use 

class can be seen. High IRQs can be observed in the land use class coniferous forest (11), deciduous forest 

(12), mixed forest (13) and water (15). Lower IRQs and whisker ranges especially occur at land use type of 

arable land (4) and wine yards/ orchards (5). Figure 3c is of same plot type as the others and is illustrating 

the distribution of surface slope within the land use classes. Similar to plot 3a-b, land use classes 11, 12, 13 

and 15 do have higher median values and higher whisker ranges. Due to small amount of samples inside the 

land use classes 1, 3, 7, 8, 15 and 16, the corresponding results should not further be considered. 
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Fig.7 Allocation of samples inside slope 
classes. Class value is upper range 
value (0°-1° = class 1) 

Fig.6 Difference of SRTM25 to GLAS 
elevations by surface slope 

Fig.4 Difference of SRTM90 to GLAS elevations by 
surface slope 

As described in the method section, a grouping of surface slope values into specified intervals was 

conducted. Fig.4, Fig.5 and Fig.6 illustrate the observed deviance between GLAS heights and DEM heights 

in relation to surface slope (absolute values in the range of 1° to 20°). Surface slope values are distributed 

inside the slope classes as follows: (1) 357, (2) 1026, (3) 1337, (4) 1521, (5) 1406, (6) 1227, (7) 1047, (8) 

909, (9) 734, (10) 605, (11) 530,(12) 435 ,(13) 411,(14) 349, (15) 291, (16) 274, (17) 247, (18) 215, (19) 188, 

(20) 165, (25) 654, (30) 368, (35) 185, (40) 37, (45) 21, (50) 11, (55) 4, (60) 3, (65) 2 and 20 observations 

are above 65 degree. The distribution is right-skewed with a maximum of samples between 3° and 4° in 

class number 4 (Fig.7). The high difference between class 20 and 25 occurs because of a change in the 

interval range. The number of 1341 observations within all classes above 20° surface slope is relative small 

compared to the other 13274 observations, which are located between 0° and 20°. Linear regression of 

height differences and ungrouped original slope values in the range of zero to 20 degrees was conducted. 

With low r² values between 0.01 and 0.03 a significant relationship could not be found. Gradients for the 

linear function are 0.46/SRTM90, 0.25/SRTM25 and 0.13/GDEMV2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION AND CONCLUSION 

Elevation differences have been analyzed under consideration of two potential influence factors: land use 

and surface slope. Related to land use classes we observed different values and mean variations of 

elevation differences. This implies that the land use class does affect elevation differences. Distribution of 

slope values inside the land use classes (Fig. 3d) is not the same in each class. Compared to other land use 

classes, the classes 11, 12, and 13 contain higher values of surface slopes. With regard to the forest types it 

Fig.5 Difference of GDEMV2  to GLAS 
elevations by surface slope 
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is noticeable that these classes do have similar mean values. This statement can be observed for each 

DEM. The samples located in forested areas seem to be in more steep areas compared to the other land 

use classes (Fig. 3d). Two possibilities have to be further investigated. First, elevation measurements are 

different due to behaviour of different wavelengths (Fig.1) in relation to the type of land cover. Second, the 

strong influence of surface slope on height measurements covers any further influence by land use classes. 

The fact that we used SRTM25 data to calculate surface slope must be viewed critically, because it is well 

known that radar backscatter behaviour is strongly affected in mountainous areas. Further analyses should 

be carried out with an independent comparative data set from airborne LiDAR.  

With regard to the method used for elevation extraction, we did not account the different resolutions of DEM 

sources. The extraction of raster values is based on the GLAS footprint centre location. It is not based on the 

footprint size and therefore not based on a spatial interpolation. For an accurate spatial interpolation, 

calculation of shape and energy distribution of each ICESat footprint should be done. This will be 

investigated in further studies with a combination of a high resolution DEM by airborne laser scanning.       

Especially the method of GLAS elevation computation should be considered critically. In non-forested areas 

the method ‘centroid of signal end to signal begin’ for elevation computation may be sufficient. In forested 

areas the GLAS surface elevation does not represent the top of canopy or the bare ground (Fig. 1). For a 

more comparable study the behaviour of GLAS waveform on forested areas needs to be considered. A more 

adapted computation with respect to forest canopy by GLAS waveforms should make the GLAS elevations a 

better reference to evaluate the other elevation models in forested areas.  

The results of this study are summarized below. Best elevation model for mountainous areas is the 

GDEMV2. It is least affected by rising surface slope. In flat areas, due to the higher ground resolution, the 

SRTM25 should be used. As well it has the lowest offset to ICESat data (5.2m), calculated by absolute 

differences. Further studies should adapt the ICESat elevation computation to the land cover.   
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