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ABSTRACT 

This paper summarizes the approach and results of error propagation analyses in the Olše and Stonávka 

confluence area. In terrain analyses the outputs of the aforementioned analysis are always a function of 

input. Four different digital elevation model (DEM) resolutions (0.5, 1, 5 and 10 meters from LIDAR cloud 

points) were examined with Root Mean Square Error (RMSE) rating up to 0.317 meters (10 m DEM). They 

all originate in LIDAR survey. In the analyses was performed a stochastic Monte Carlo simulation with 100 

iterations. Article targets the error propagation for large-scaled area using high quality input DEM. The DEM 

data uncertainty (RMSE) was computed from samplings and ground research (RTK GPS). According to 

empirical error distribution it was used semivariogram to model spatially autocorrelated uncertainty in 

elevation. Second procedure modelled the uncertainty without autocorrelation using random N(0,RMSE) error 

generator. Based on Monte Carlo simulation method the initial DEM was repeatedly perturbed by the 

uncertainty. Finally, statistical summaries were drawn to investigate the expected hypothesis. As expected; 

the error in slopes is increased with the vertical error in input DEM. According to similar studies using 

different DEM input data, high qualitative LIDAR input data decreases the output uncertainty. Errors without 

spatial autocorrelation do not result to greater variance in resulting slope error. Therefore it should be 

challenged, if error propagation without spatial autocorrelation represents sufficiently the true state of the 

nature of the error representation. In this case; although the slope error results (comparing random 

uncorrelated and empirical autocorrelated error fields) did not showed statistical significant difference, the 

input elevation error pattern has not been normally distributed and therefore the random error generator 

realization is not suitable interpretation of true state of elevation errors. The normal distribution was rejected 

because of the high kurtosis and extreme values (outliners).   
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1.  INTRODUCTION 

Although many studies and research in field of digital elevation model uncertainty and its error propagation 

were done, still there are some unacceptable assumptions about the error expected. Firstly, the DEM error 

disappears with precise data acquisition and optimal interpolation algorithm. Secondly the DEM error is 

thought to be as small as not affecting the outputs of the analyses using DEM input. Last but not least DEMs 

are assumed and used as error-free models of reality, even though the existence of elevation uncertainty 

and gross errors are widely recognized [Oksanen, Sarjakosi 2005] [Torlegard et al. 1986]. In the last 

decades geomorphometry based on fine topscale DEMs have become popular in environmental science 

[Hutchinson, gallant 2000]. The accuracy of a digital elevation model is particularly important with its 
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intended use [Erdogan 2010]. So the misjudgements increased the importance of solving DEMs uncertainty 

and the error propagation problem. The awareness that uncertainty propagates through spatial analyses and 

may produce poor results that lead to wrong decisions has triggered a lot of research on spatial accuracy 

assessment and data quality management in GIS (e.g. Heuvelink 1998, , Lee 1992, Shi et al. 2002) 

[Heuvelink 2007]. Information on the uncertainties in results from Geographic Information Systems (GIS) is 

needed for effective decision-making. Current GISs, however, do not provide this information.  [HWANG 

1998, Burrough 1993]. Furthermore there is the demand for presenting a level of accuracy (precision) 

[Burrough 1993]. Thus the long term vision in the research in spatial data uncertainty, accordingly DEM as 

well, has been to develop a general purpose “error button” for generating information systems (GIS) 

[Openshaw et al. 1991]. There are two main ideas how to implement this button. GIS could be incorporating 

the button into the product metadata [Goodchild 2000] or in more sophisticated solution is seen the button as 

user-dependent, which offers various possibilities for refining the error model according to the user’s level of 

expertise [Heuvelink 2003]. The first steps towards the vision became a reality with building a data 

uncertainty engine, which implements the general framework for characterising uncertain environmental 

variables with probability models [Heuvelink, Brown 2005]. According to the authors many other research 

groups have worked on the design of an ‘error-aware GIS’, but very few have reached the operational stage. 

After the call for the development of geographical information systems that can handle uncertain data lasted 

at least for twenty years, Heuvelink developing the Data Uncertainty Engine (DUE) engine filled the gap 

[Heuvelink 2007]. Just the first step towards the solution of the error propagation problem has been made. 

The DUE must be further elaborated and improved. Sustained development of science and technology 

brought and will bring new methods of data collection and processing. As well DUE as other potential 

software, using different or same approaches, have to adjust to the changes. The usage of massive high-

resolution DEMs based on airborne light detection and ranging (LIDAR) has renewed some assumptions. 

Two important factors appear to explain the lack of scientific knowledge about the use of LIDAR DEMs in 

uncertain-aware terrain analysis. Firstly, the common belief has been that the high quality of LIDAR DEMs 

[Hodgson et al. 2005, Barber, Shortridge 2005, Vaze, Teng 2007] will make the uncertainty-aware terrain 

analysis unnecessary. Secondly, uncertainty propagation studies have typically made use of simulation 

methods, such as simulated annealing and sequential Gaussian simulation [Goovaerts 1997], that are 

unsuitable for massive data sets because of their poor scalability [Oksanen, Sarjakoski 2010].  The aim of 

this paper is to analyze the aforementioned problems. 

2. DEM ERROR 

Spatial uncertainty is defined as the difference between the contents of a spatial database and the 

corresponding phenomena in the real world. Because all contents of spatial databases are representations 

of the real world, it is inevitable that differences will exist between them and the real phenomena that they 

purport to represent [Goodchild 2007]. Error is defined as the difference between reality and a representation 

of reality. In practice, errors are not exactly known. At best, there is known the distribution of values. The 

chances are equal that the error is positive or negative. [Heuvelink, Brown 2007]. The paper follows the 

taxonomy in which error is a measurable part of the uncertainty and is well-defined (probability density 

function is well known etc.) [Fisher 1999]. This choice is justifiable because the semantics of elevation do not 

suffer from the conceptual ambiguities common in, for example, defining the error in area class maps 

[Oksanen, 2005].The detailed process by which the errors in a DEM are created depends on the type of 

DEM and how it was created. Whatever method is used, DEM estimates are affected by several error 

sources, which can be grouped generally under three main classes: accuracy, density, and distribution of 

data, surface characteristics, and interpolation algorithms [Gong et al. 2000, Fisher 1998].Uncertainty in 

DEMs originates from two sources, errors in the lattice (gross, systematic, random) and accuracy loss due to 

lattice representation of the terrain [Li et al. 2005].It has been distinguish between positional and attribute 

uncertainty. Attribute uncertainty represents the deviation from true state of height and positional the shift in 

the object’s position. Understanding the uncertainty is essential to correct modelling. Most frequently error in 

standard DEM products is reported as the Root Mean Squared Error (RMSE). Various methods have been 

used for estimating the RMSE. Most recently it is supposed to be estimated by comparison of elevations 
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between the well located sites in a survey of higher accuracy with the elevation recorded in DEM at a 

minimum of 20 test points. The test points may be contour lines, bench marks, or spot elevations [Fisher 

1992]. RMSE is based on the following formula: 

 

n

hz
RMSE

 


2

         (1) 

where z is the elevation recorded in the DEM; h is the elevation measured at the higher precision and n is 

the total number of tested locations (at least 20). The Gaussian error model (mean is the estimate of the true 

values and standard deviation is a measure of the uncertainty) makes only the most general assumptions 

about the processes by which the error has accumulated. [Hunter 1997]. To achieve an improved estimate of 

the error for any particular area, a set of measurements made at a higher precision is required, at best 

having another DEM of the same area at a higher precision. In this case it is possible to compare all values 

[Fisher 1998]. The spot heights and DEM or both DEMs have to be constructed separately, independence is 

strictly required. When additional information is available about the structure of errors in data set, the 

Gaussian model should be replaced with a substituting more accurate pattern of error (non-stationary or 

stationary spatial dependent random error field). According to previous studies (e.g. Lee 1992, Hunter 1997, 

Fisher 1998, Heuvelink 2003, Oksanen 2010, Caers 2011) DEM errors are spatially correlated, 

autocorrelation is a natural characteristic of the error data.   

Hunter distinguished three cases of spatial dependence. Case one is spatial independence (r = 0). The 

elevation of each point is considered to be spatially independent of its neighbours (r = 0). In other words, 

knowledge of the error present at one point provides no information on the errors present at neighbouring 

points, even though the elevation themselves may have similar values. The elevation realization h at location 

x, y is achieved by disturbing each observed elevation z at same location by an independent disturbance 

term N (0, RMSE), which is normally distributed random variable with mean 0and standard deviation RMSE 

(Eq. 2): 

),0(),(),( RMSENzh yxyx           (2) 

Case two is spatial dependence (limit r =1). At the other extreme, spatial autocorrelation reaches maximum. 

All errors are perfectly correlated, and there is in effect only 1 degree of freedom in disturbance field being 

applied to the DEM. It is unlikely, that any DEM production process would generate systematic error in 

elevations. Case three is the spatial dependence (0 < R < 1). The case of positive correlation less than 1 is 

clearly most realistic [Hunter 1997] and the disturbance N(0,RMSE) is spatially correlated to certain range 

following the fitted error model. Exponential [Holmes 2000] and Gaussian [Oksanen 2005] spatial 

autocorrelation models were selected to represent the correlation of the DEM error in the DEM uncertainty 

propagation studies. First exponential and later Gaussian model has been found to be realistic and suitable 

for topography [Goovaerts 1997]. The study investigates the type of model, range and the spatially 

independent random error pattern.  

2.1 Error Propagation 

There are two main approaches in error propagation of a continuous variable: the analytical and the 

numerical error propagation.  The analytical error propagation method uses an explicit mathematical model 

to describe the mechanisms of error propagation for a particular multi-criteria decision rule [Eastman 1993]. 

In numerical methods, the calculations are not made with exact numbers. Instead of exact numbers are 

processed numerically generated random data sets. Usually they are generated on a computer and in a case 

of complicated data or physical model for analytical approach. Simulation of the error is made stochastically 

using Monte Carlo simulation, which is further subdivided into unconditioned and conditioned [Fisher, Tate 

2006]. Unconditional error simulation models are based on number of realizations of random functions. At 

their most basic, they comprise an algorithm to select independent and uncorrelated values drawn from a 
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normal distribution which can be added to the original DEM. The problem with unconditioned simulation is 

that it still makes the assumption that the pattern of error is uniform over the study area or a wider region. 

Conditioned error models directly honour observations of error at the sample locations. Such observations 

might have been obtained by comparison between the DEM and a higher accuracy reference data set 

collected from the same area [Fisher, Tate 2006]. In other words, the parameters of error model vary 

depending on the specific location. Comparing the results of using different methods of error modelling, the 

best method, which gives widely implementable and defensible results, is that based on conditional 

stochastic simulation [Fisher 1998]. The most common uncertainty propagation analysis approach makes 

use of Monte Carlo stochastic simulation [Johan Beekhuizen et al. 2009].The utilisation of Monte Carlo 

simulation, which is the most flexible method for investigation the propagation of uncertainty in terrain 

analysis, is time-consuming [Oksanen 2010]. Thus in this paper was used unconditional Monte Carlo 

simulation to propagate the error. Although the area is relatively small (11.26 km
2
 respectively 1.25 km

2
) and 

the relative difference in elevation less than 45 meters, it has been investigated the empirical error pattern to 

find anomaly or trend within (chapter 5.1).The outline of the Monte Carlo simulation is shown in the Fig. 1.  

 

 

Fig. 1: Outline of Monte Carlo simulation, here 1) denotes the input DEM, 2) SLOPE calculated from 1),3) 

generated DEM ERROR,4) Alternative DEM, 5) Alternative slope, 6) Error in slope, 7) Statistics. 

In simulations were used particular initial DEM. This DEM has been considered as error free representation 

of the true state of the elevation. Next has been calculated the “error free slope”. Then DEM error patterns 

have been generated according to initial DEM and error model attributes. Initial DEM has been perturbed 

with the generated random error field. The resulting DEM has the essential properties of both the error 

pattern and initial raster. Thus have been generated 100 realizations of DEM and subsequently slope 

estimates derived from alternative DEMs. Set of error patterns in slopes has been calculated as the 

difference between the error free slope and the particular alternative slope. Using appropriate statistics has 

been derived the results of the simulation. In some cases has to be used absolute error value instead of the 

error value. 

2.2 Slope computation algorithm 

A variety of methods can be used to estimate slope from DEM. Weighted least squares fit of a plane to a 3x3 

neighbourhood centred on each point is the most amenable to a mathematical analysis of error propagation 

[Hunter 1997].Including the most used GIS software (SW) ArcGIS most of the GIS SW use this method to 

compute the slope from DEM. In this paper we decided to follow the aforementioned method’s algorithm. 

The output slope derivate can be calculated in degrees (angular unit Eq. 8) or percentage (Eq. 7). Degrees 

are the units chosen in the paper. Slope in degrees is calculated multiplying the slope in radians with 

57.29578. Slope calculation (Fig. 2) is based on the change of height (rise) in the direction of x and y 

direction (run) - mathematically the first partial derivation of z in x and y axes. Thus the slope (Eq. 5) is 

determined by the rate of change (Beta) in both horizontal (HD Eq. 3) and vertical (VD Eq. 4) direction from 

the centre cell (E).  
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The approximation of the partial derivatives was made by third-order finite difference method (Eq. 5 and 6) 

[Skidmore 1989].  The method uses the 3x3 neighbourhood (Fig. 3) of the elevation values obtained in the 

raster around the centre cell. The distance between the elevation points is denoted wand represents also the 

cell (pixel) size of raster. 

 

Fig. 2. Left the 3x3 neighbourhood window of the centre cell E and right the rise, run and beta description. 
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The influence of data precision on derived slope is highly related to the grid resolution. While using a high-

resolution DEM (e.g. 1m grid resolution), the influence of data precision becomes quite significant. DEM 

resolution determines the level of details of the surface being described. It naturally influences the accuracy 

of derived surface parameters. On the other side usually the DEM error caused by data precision level is 

quite minimal, except in flat areas where the rounding errors could be significant [Zhou, Liu, 2004]. The 

precision significance has been investigated also, to prove or reject. We tried to minimize the rounding error, 

because of flat areas. 

4 STUDY AREA 

Error propagation was carried out along a 5.9 km stretch of the Olše River and a 3.2 km stretch of the 

Stonávka River. Both river sections are located in the northeast region of the Czech Republic near its border 

with Poland [Podhoranyi 2011].The area is located south of the city Karviná in the north-eastern part of the 

Moravian-Silesian Region. The area is 5.544 km in length and 2.281 km in width spaced. After the area 



GIS Ostrava 2012 - Surface models for geosciences January 23. – 25., 2012, Ostrava 

 

affected with gross error has been eliminated, it remained a total area of 11.262 km
2
. Because of gross 

errors and uncertainty in data collection process caused by atmosphere, three parts of the area (west) had to 

be clipped. Due the time-consuming computational method the 1.250 km
2
 large study are have been used in 

case of higher precision data input (Fig. 3). The elevation of the area is varying between 211 and 256 

(respectively 216 to 227 for small area) meters over the sea level. The slope is varying from 0°to 85° 

(respectively 0 to 67 degrees). The average slope values (1.95° to 3.9° respectively 3° to 3.5°) and the data 

histograms revealed the flat characteristics of the surface with few steep slopes  

 
Fig. 3. Study area and measurement point locations for RMSE computation. 

 

5.  DATABASE CREATION 

GIS database comes from various sources, each having its own level of uncertainty, depending on the 

specific technique used to acquire it. [HWANG 1998] The input data used to create the DEM in this study 

were obtained using the LIDAR method (Light Detection and Ranging). The Swedish company TopEyeAB, 

working with the MK-II laser system of its own design, carried out flights over the research area. The system 

consisted of a laser scanner with a50 kHz frequency, Inertial Navigation System (INS) and Global 

Positioning System (GPS) systems. The optical portion of the scanner deviated the laser beam into circular 

traces. The system was supplemented by a Rollei digital air camera with a 16-megapixel resolution (4080 x 

4076 pixels). Scanning was carried out on the D-Hahn helicopter carrying the MKII-S/N 804 system at an 

altitude of 300 m [Podhoranyi, 2012]. DEMs (0.5, 1, 5 and 10 m. resolution) were computed independently of 

each other from particular acquired LIDAR data point cloud.  The RMSE in input data has been calculated 

two times for every DEM to make comparison of possible inputs. First have been calculated the error values 

subtracting the DEM from the DEM with higher precision (resolution). 0.2 m resolution DEM has been used 



GIS Ostrava 2012 - Surface models for geosciences January 23. – 25., 2012, Ostrava 

 

for 0.5 m resolution DEM. Then the RMSE (0.317 for 10m, 0.156 for 5m, 0.04 for 1m and 0.035 for 0.5 meter 

resolution) was calculated from the error values of the whole area. This RMSE values have been compared 

with the result of the second computation, which has been computed from RMSE of 49 point measurements 

in the study area (Fig. 3). 22 of 49 points were created by CUZK (Land Survey Office of Czech Republic) 

without any given information of data gathering method and accuracy. The second RMSE computation has a 

higher RMSE, which was effected by the location of the 49 points. They are not representative for the whole 

area. 49 points were located more in error prone surface (roadsides, river bank sides) as is their proportion 

of the total area. The 10 m resolution RMSE difference takes 5.7 cm (0.374 for 49 points and 0.317 for 

LIDAR), what is 17% of the total value of LIDAR RMSE. In other resolutions cases it was even worse (5 m – 

14.1 cm, 1 an 0.5 m – 24.9 cm). It is necessary to mention, that the LIDAR DEM of higher accuracy inherent 

a certain uncertainty too. LIDAR RMSE results have been taken to fit the spatially uncorrelated error pattern 

as consequence of better representation of the continuous empirical error pattern. The autocorrelated error 

pattern has been made by investigating the empirical elevation error (Chapter 5.1). 

5.1Simulation of random fields 

The input error field has been made by investigating the empirical error pattern obtained with aforementioned 

method (Chapter 2). Error propagation has been modelled with and without spatially autocorrelated error 

field. The real state of nature is other than the expected theoretical state. First, there is an unjustified 

assumption that the mean error is zero [Li, 1988]. The error mean statistics were close to zero, but all of 

them were rejected as statistical zeroes using t-test hypothesis test in SW Statgraphics (Tab. 1). 

Tab. 1  DEM error statistics (Number of Elevation Points, Error Mean [meters], Standard Deviation of Error 

[meters], Maximum Absolute Error [meters]). 

DEM resolution NUM. POINTS MEAN STD. DEVIATION MAX ABS ERROR 

10 x 10 263 520 -3.2  10
-2

 0.692 11.942 

5 x 5 1 051 997 -1.2  10
-3

 0.362 12.053 

1 x 1 26 289 516 -2.3  10
-3

 0.085 9.567 

0.5 x 0.5 83 963 724 1.0  10
-5

 0.008 1.597 

 

Thus the best fit is to follow the empirical model (Fisher 1998). If the difference between the elevation in the 

DEM and the actual surface (which equals the error surface) is done, the error surface should have a large 

positive autocorrelation [Goodchild 1995]. It is assumed that the RMSE over the study area is constant or 

spatially autocorrelated, what was confuted in previous researches (Fisher, Oksanen etc.). Although the total 

area is 11.262 km
2
 small and according to the terrain surface and aforementioned research results (RMSE 

should be constant), it was necessary to divide it into smaller subareas, where this statement was proved. 

There have not been find a significant difference in parameters (range, partial sill and nugget). The area has 

been searched for trends. But none have been found. The best fitted model was the Stable one. According 

to previous researches it has been chosen Exponential and Gaussian to fit the pattern. Gaussian and 

Spherical had almost the same results, but the Gaussian better fitted the closest averaged values, so it has 

been chosen (Tab. 2, Fig. 4, 5, 6, 7). The appropriate shape of the spatial autocorrelation model was not 

critical as the computed autocorrelation parameters.  

Tab. 2 Gaussian error model parameters. 

DEM resolution Lag Size [m] Num. of Lags  Nugget [m] Partial Sill [m] Range [m] 

10 x 10 6.480 12 0.246 0.165 49.025 

5 x 5 5.054 12 0.068 0.042 31.090 

1 x 1 3.610 12 0.001 0.005 13.752 

0.5 x 0.5 0.544 12 3.2 10
-5

 2.7 10
-5

 3.897 
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Fig. 4. Gaussian error model for 1x1 m resolution DEM. 

 

Fig. 5. Gaussian error model for 5x5 m resolution DEM. 

 

Fig. 6. Gaussian error model for 10x10 m resolution DEM. 

 

Fig. 7. Gaussian error model for 0.5x0.5 m resolution DEM. 
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The theoretical Gaussian models have been used to model the fields, Fig. 8 depicts the difference between 

the spatially correlated and uncorrelated random field (10 m DEM). The error fields have been modelled 100 

times for each DEM to perform Monte Carlo simulation. The outputs of aforementioned stochastic error 

propagation (Fig. 1) are mentioned in the following chapter results. The theoretical 0.5 m resolution 

Gaussian error model (Fig. 7) opens a question about the threshold, when is reasonable use spatially 

autocorrelated model and when just white noise.  
 

Fig. 8.  Left uncorrelated white noise and right spatially correlated random error field of 10 m DEM. 

6. RESULTS AND CONCLUSIONS 

The error propagation results are summarized in table 3. For example in case of 10x10 m DEM error input 
we expect 0.680° (respectively 0.657° without spatial autocorrelation) error (mean of the means in column 5). 
For 5x5 m it is 0.657° (0.635°), 1x1 m 0.796° (0.776°) and for 0.5x0.5 m 0.272° (0.395°). The results are 
represented in absolute values. The behaviour of the error, that the value x and its opposite value –x 
represent the same deviation from the real state of nature, made possible this representation. It is more 
natural to see the errors in positive values and it enables better interpretations. If one number is most 
representative of the error evaluation, then it is the mean.  It has been randomly selected 50 spot samples to 
prove the insignificant difference between the slope error result derived from inputs with and without 
autocorelation. 

Tab. 3: Error propagation results [m or °] (Particular DEM, Input DEM error std. deviation for all elevation 
values, DEM RMSE, Output Slope absolute error statistics according to cells – mean, min, max, std. dev.).  

DEM  Auto- Error in DEM Output Slope absolute error [degrees] 
resolution Correl s. d. RMSE mean Min Max std. dev. 

10 x 10 Yes 0.692 0.317 0.449-1.302 2.98 10
-8

-0.392 0.979-4.312 0.373-0.881 
10 x 10 No 0.692 0.317 0.379-1.296 0-0.273 1.169-4.925 0.283-0.829 
5 x 5 Yes 0.362 0.156 0.296-1.255 0-0.366 0.580-4.473 0.11-0.882 
5 x 5 No 0.362 0.156 0.216-1.286 0-0.313 0.631-4.543 0.167-0.831 
1 x 1 Yes 0.085 0.04 0.276-3.017 0-0.469 0.805-13.205 0.202-2.276 
1 x 1 No 0.085 0.04 0.286-1.441 0-0.361 0.919-5.747 0.210-0.871 
0.5 x 0.5 Yes 0.008 0.035 0.043-0.510 0-0.134 0.126-2.438 0.029-0.385 
0.5 x 0.5 No 0.008 0.035 0.027-2.587 0-0.164 0.120-10.651 0.073-1.557 
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Every spot sample has 100 alternative values, which have been used to compute mean and standard 
deviation. Two sample F test (st. deviation) and two sample t rest (mean) have been used. Null hypothesis 
set to: There is no difference in standard deviation (respectively means) and alternative hypothesis to: There 
is statistically significant difference between the std. deviations (means). For example for 1x1m resolution; 
we discovered that 49 in 50 cases for mean, respectively 47 in 50 for std. deviation are not significantly 
different (Tab 4 showing 5 examples). Errors without spatial autocorrelation do not result to greater variance 
in resulting slope error (Oksanen got same results). Therefore it should be challenged, if error propagation 
without spatial autocorrelation represents sufficiently the true state of the nature of the error representation. 
In else we proved, that DEM error input without autocorrelation does not result (few exceptions) to greater 
error estimate of slope. Critical is the 0.5x0.5 resolution DEM error input, which leads to more inequalities. 
This phenomenon should be further investigated to understand the reason. 

Tab. 4: Two sample F-test respectively t-test for 5 spots. Hypothesis (H0) (sigma1/sigma2 = 1.0) concerning 
the ratio of the standard deviations of one spot sample of 100 observations for F-test, and hypothesis 
concerning the difference between the means (mean1-mean2 = 0.0, sigma1 and 2 input needed too) for t-
test. (both 95.0% confidence level, P-value 0.05 and less rejects H0). 

Random   Autocor. White noise Hypothesis test: 
Sample Slope Value Value F(t) statistics P-v. Null Hypothesis 

1 std. deviation 17.536° 0.322 0.314  (F) 1.052 0.803 Do not reject, ratio = 1 
2 std. deviation 11.232° 0.396 0.400 (F) 1.051 0.803 Do not reject, ratio = 1 
3 std. deviation 5.950° 0.407 0.416 (F) 0.957 0.828 Do not reject, ratio = 1 
4 std. deviation 0.137° 0.442 0.392 (F) 1.271 0.234 Do not reject, ratio = 1 
5 std. deviation 0.226° 0.502 0.322 (F) 2.435 1.10

-5
 Do reject, ratio <> 1 

1 mean 17.536° 0.798 0.795 (t) 0.067 0.947 Do not reject, difference = 0 
2 mean 11.232° 0.787 0.778 (t) 0.200 0.841 Do not reject, difference = 0 
3 mean 5.950° 0.769 0.817 (t) -0.825 0.410 Do not reject, difference = 0 
4 mean 0.137° 1.117 1.155 (t) -0.643 0.521 Do not reject, difference = 0 
5 mean 0.226° 1.008 0.894 (t) 1.911 0.057 Do not reject, difference = 0 

Although the result of input error without autocorrelation did not showed greater aberration, it is not suitable 
for elevation error pattern modelling. In fine topscale and microscale (Oksanen 2005) scale has the error 
pattern large positive autocorrelation. Furthermore in our case the outliers are responsible for rejection of 
Gaussian distribution. The outliners have to be also incorporated to the error model, what has not been done 
due to the lack of time. The average variance and mean of the errors in slopes is not strictly increasing with 
steepness of the slope (e.g. Fig.9). This causality should be further investigated; one of the reasons is the 
insufficient number of samples with steeper slope. The prevailing spatial distribution of slopes in study are is 
partially captured also in mean slope error (Fig. 10, Fig. 11). Input based on empirical elevation error (AC) 
describes better the error pattern and leads to more realistic and accurate spatial distribution of slope errors 
according to slope in study area. White noise (WN) input error field is closest to AC in minimum slope error 
distribution. Linear planar surfaces (roads etc.) are inadequately propagated. Planar surface is the most error 
prone type. According to similar studies (Fisher, Goodchild etc.) using different DEM input data, high quality 
LIDAR input data decreases the output uncertainty. In our case, the autocorrelated model fitted the error 
surface with exception of its outliers. There is a need to find a way how to include them. Extreme values are 
higher in case of theoretical model with autocorrelation; random number generator produces smaller extreme 
values also. Autocorrelation also expands the std. deviation of extreme values. On the one side the extreme 
elevation error values were found to be clustered around the steepest slopes, on the other side the steeper 
slopes has smaller slope error result with same elevation error input. Range of fitted empirical error model 
(49.6 for 10x10, 31.1 for 5x5, 13.8 for 1x1 and 3.9 for 0.5x0.5) was decreasing with higher resolution. We do 
assume that there should be a specific resolution limit value, where range is close to 0. Geostatistical 
modelling is very time consuming. We had to decrease the extent for the 0.5x0.5 and 1x1 meter resolution 
inputs. To compute one 1x1 meter DEM resolution error pattern (21 983 304 values in 5964 rows and 3686 
columns) took 12 days and 17 hours (using 30 GB RAM and 4 processors Intel(R) Core(TM2)2 Quad CPU 
Q9300, 2.5 GHz). This computation requires super-computer.  
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Fig. 9: Slope Error dependent variable (vertical axis) vs. Slope independent variable (horizontal axis) (WN 
randomly generated white noise, AC autocorrelation input according to empirical error pattern) showing the 
decrease in slope error with increasing slope. 

 

 
 

Fig.10: Mean, Variance, Minimum and Maximum statistics for 10x10m slope errors; if darker the colour then 
higher the slope error value and more planar the surface.  
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7. DISCUSSION 

Although a lot of research has been made in the uncertainty and error propagation field over the last 
decades, still many questions left unanswered. In this study we focused to clear antagonistic results provided 
by Oksanen and Fisher. Oksanen declared that slope errors modelled without autocorrelation do not get 
worse result. In else, the slope derivate has not maximum variation with spatially uncorellated random error. 
On the other side Fisher declared, that the slope derivate computed from uncorrelated random error is 
worse, because of the poor input elevation error representation. We have found that Oksanen is right. Fisher 
is correct about the poor representation and the research area should be always investigated before 
analysed. We were not able to completely ascertain the character of the pattern error. Definitely it has been 
found the underlying error pattern. Some irregular outliners appeared which have to be incorporated. The 
next step should be investigation of the outliners. The empirical error model and the modelled error model 
have to be subtracted and the product investigated (external data may help too – underlying geology, terrain 
roughness, land use etc.). The resulting pattern is an addendum to the underlying error pattern. There can 
be more functions describing local shapes of error pattern. Sum of all functions (patterns) gives the resulting 
error pattern. We have found that there should be a threshold value, which in case of high precision and 
resolution data do not require the usage of autocorrelation in error surface (in case of high precision LIDAR 
data input and relatively small area).  
It is true, that any given input data is carrying error value significant enough to change the resulting slope – 
even the high precision micro-scale LIDAR DEM. Results obtained with DEM inputs of same resolution and 
acquired with other methods (photogrammetric) could be used for better comparison and calculation of exact 
LIDAR improvement in slope error estimation. Other software tools should be used to prove simulated reality 
with gstat. According to time demanding computational process, it should be less consuming processes 
investigated for error pattern simulation, e.g. fuzzy approach. Software development and new 
supercomputers could be another solution. There is still a doubt, pros and cons, if unconditional Gaussian or 
sequential Gaussian simulation has to be used, how to model non-stationary error field in larger areas and 
what it is dependent on??  
It is necessary to remember the main reason of dealing the uncertainty: decreasing the risk that the outcome 
will be incorrect and will lead to wrong decisions. This study has been made as error propagation 
background to inundation area delineation with GLUE method in the area. The processing of airborne 
hyperspectral data introduces uncertainty, which is enough to change the product. To know the uncertainty 
in the result is important in crisis management and other fields. Sometimes even one degree in slope can 
change the situation and flooded area. 
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