
GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

GRASS GIS 7.0: Interoperability improvements

Martin LANDA1

1
 Department of Mapping and Cartography, Faculty of Civil Engineering,

Czech Technical University in Prague, Thakurova 7, Prague, 166 29, Czech Republic
martin.landa fsv.cvut.cz

Abstrakt

Interoperabilita se stává podstatným aspektem pro orgranizace, které poskytují a sdílí data. Pro dosažení

větší míry interoperability hraje podstatnou roli respektování platných technických normem a specifikací.

Free software a open source hraje nezastupitelnou roli na trhu s geoinformačními technologiemi, ve vědě,

výzkumu a v neposlední řadě i ve vzdělávacím procesu.

GRASS GIS je open source projekt publikovaný pod licencí GNU GPL. Je volně dostupný pro celou škálu

uživatelů, kteří vyžadují sofistikované nástroje pro analýzu geoprostorových dat. Historie projektu GRASS je

velmi dlouhá a zajímavá, s obdobími rozkvětu či naopak útlumu. Kořeny projektu sahají do počátku

osmdesátých let. V důsledku toho není v projektu GRASS implementována většina OGC specifikací či ISO

technických norem.

Tento příspěvek je zaměřen na OGC specifikaci Simple Features pro uložení a manipulaci s vektorovými

daty v systému GRASS. Tato specifikace je v systému GRASS implementována díky integraci knihovny

OGR, která podporuje celou řadu vektorových GIS formátů včetně PostGIS, Esri Shapefile nebo SpatiaLite.

Tato integrace zahrnuje podporu pro režim zápisu a představuje zásadní příspěvek k rozšíření

interoperability vektorové knihovny systému GRASS.

Kromě integrace knihovny OGR je popsán vývoj plnohodnotné podpory PostGIS v systému GRASS. Tato

podpora zahrnuje, jak přístup v režimu simple features, tak především topologický přístup k vektorovým

datům. Topologický přístup je umožněn rozšířením PostGIS Topology. Topologický model PostGIS je

založen na technické normě ISO SQL/MM. V rámci textu je popsán datový model PostGIS a GRASS včetně

konverze mezi těmito topologickými modely. Jako výsledek umožňuje GRASS vytvářet, zpracovávat a

analyzovat topologická vektorová data uložená v geodatabázi PostGIS pomocí široké škály nástrojů systému

GRASS pro zpracování vektorových dat.

Na závěr je zmíněna integrace knihovny GDAL v systému GRASS s důrazem na zlepšení interoperability při

práci s rastorovými daty.

Abstract

Interoperability is increasingly becoming a focus point for organizations distributing and sharing data. The

standards are an essential aspect of achieving interoperability. Free software and open source plays

an important role in the GIS market, and especially in the research including educational activities.

GRASS GIS is an open source project published under the GNU GPL license. It's freely available for a wide

range of users who need sophisticated tools for analyzing geospatial data. GRASS has very long and fruitful

history, full of the upswings or downswings. It's roots are reaching early 80's. On the other hand most of the

OGC or ISO standards are not really implemented by this project.

This paper aims to focus on OGC Simple Features specification for storing and manipulating vector data in

GRASS GIS. GRASS implementation of simple features access is based on well-known OGR library, which

supports a wide range of GIS vector formats including PostGIS, Esri Shapefile, or SpatiaLite. The full OGR

integration including write access significantly increases interoperability of the GRASS vector library.

Beside the OGR integration, this paper also describes the development of fully-featured PostGIS support in

GRASS GIS. The GRASS-PostGIS data provider allows simple features, and most importantly topological

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

access to the vector data. Topological access to the vector data stored in PostGIS geodatabase is based on

PostGIS Topology extension. PostGIS topological model implements ISO SQL/MM standard. This paper

describes PostGIS and native GRASS topological data models and conversion issues between them. As the

result, the GRASS user is able to create, manipulate, and analyze topological vector data stored in PostGIS

database by wide range of the GRASS tools for vector processing.

To complete interoperability issues in GRASS GIS, the integration of GDAL library in GRASS raster engine is

slightly mentioned.

Klíčová slova: Free Software GIS; GRASS; PostGIS; interoperabilita; vývoj

Keywords: Free Software GIS; GRASS; PostGIS; interoperability; development

1 GRASS GIS

Geographic Resources Analysis Support System commonly referred as GRASS (http://grass.osgeo.org) is

a free software Geographical Information System (GIS) used for managing, analyzing, and processing

geospatial data including image processing, or hardcopy maps creation. GRASS GIS as an official OSGeo

(Open Source Geospatial Foundation) project is released under GNU GPL license.

GRASS is a project with very long history, its development started in early 80's in U.S. Army Construction

Engineering Research Laboratories (USA-CERL). The first version (1.0) of GRASS GIS has been released in

1985. In 1995 USA-CERL left the GRASS project (the last GRASS release under USA-CERL leadership was

version 4.1 from 1993) [1]. After two years of uncertainty, in 1997, GRASS development was taken over in

academia, namely by Baylor University (Waco, Texas) for a period, then it migrated to University of

Hannover (Germany). Since GRASS was initially developed by the U. S. Government, it was considered

Public-Domain, the first version released under GNU GPL license was GRASS 5 in 1999. In 2001 the

GRASS Development Team was officially established, as an international group of developers. In 2006

became GRASS a founding project of Open Source Geospatial Foundation (OSGeo). Development of

GRASS 6 started in 2002, first stable release of GRASS 6 was published in 2005. The last stable version

was released in February 2012 as GRASS 6.4.2.

1.1 GRASS 7 Development

Development of the new GRASS generation (ie. GRASS 7) officially started in 2008. The first version

GRASS 7.0 is planned for the summer in 2013. This paper is focused mainly on the vector architecture in

GRASS 7.

2 VECTOR ARCHITECTURE IN GRASS 7

Vector architecture has its roots in GRASS 6 [2]. Major improvements in the vector library for GRASS 7 has

been done in topology management and spatial index handling (by Markus Metz). As a result GRASS vector

format in version 7 is not compatible with GRASS version 6. Vector architecture of GRASS 7 is more robust

and scalable, compared to it's predecessor.

Interoperability of the GRASS vector engine became one of the major issues for GRASS 7. Vector library in

GRASS 6 comes with very limited OGR support [2], which allows reading vector data in various GIS formats

supported by OGR library (see section 2.1). OGR integration (implemented as GRASS-OGR data provider)

in GRASS 6 hasn't been fully implemented, remained very limited (read-only access to the OGR data) and

not really used by the GRASS users. To sum it up, GRASS vector architecture allows access to external GIS

vector data, using GRASS command (ie. module) v.external which creates a link to the external data. This

link is stored as a normal GRASS vector map, so the vector data can be accessed by other GRASS

commands. Note that this link is read-only, in other words, it's not possible to modify vector data, accessed

by the OGR data provider in GRASS 6.

http://grass.osgeo.org/

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

2.1 OGR Library

OGR (http://gdal.org/ogr) is an open source C++ library for reading and writing vector geospatial data

formats released under permissive X/MIT style free software license. It's part of GDAL/OGR library under

OSGeo umbrella. As a library, it defines abstract data model for all supported data formats. The OGR data

model is based on OGC specification Simple Features Access [3].

3 INTEROPERABILITY IN GRASS 7

Interoperability of GRASS GIS is based on fully-featured GDAL/OGR and native PostGIS support

implemented in GRASS 7 [4] (see fig. 1).

3.1 Raster data

Raster data can be read by GRASS raster library, directly using GDAL library (http://gdal.org). GDAL library

supports more than one hundred GIS raster formats
1
. Raster data in the data formats, which are supported

by GDAL library, can be registered by GRASS command r.external. This command creates a GRASS raster

map as a link to the external data, which can be accessed by any GRASS command.

r.external input=/path/to/elevation.tif output=dem

The command creates a new GRASS raster map called 'dem' as a link to the GeoTIFF file located in

'/path/to/elevation.tif'. When accessing raster map 'dem', the GRASS raster library reads directly GeoTIFF

file using GDAL library.

Raster data can be also written by GRASS commands to any GIS raster format which GDAL supports in

write access. By default, raster data produced by GRASS are stored in the native format. External raster

data output format can be defined by r.external.out command.

r.external.out directory=/path/to/data extension=tif format=GTiff

1 GDAL Library. Supported raster formats. http://gdal.org/formats_list.html

http://gdal.org/ogr
http://gdal.org/
http://gdal.org/formats_list.html

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

Fig. 1. GRASS architecture with different data sources.

The above mentioned command forces the GRASS raster library to write raster data directly as GeoTIFF

files located in directory '/path/to/data'/. Eg. the command bellow writes a slope map in GeoTIFF file located

in '/path/to/data/dem_slope.tif' instead in the native GRASS raster format. GRASS raster map, which points

to the output GeoTIFF file is created automatically. So the data can be accessed as normal GRASS raster

maps.

r.slope.aspect elevation=dem slope=dem_slope

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

3.2 Vector data

The GRASS-OGR data provider was completely rewritten in GRASS 7, including newly implemented write

access (see section 4 for details). OGR library supports almost eighty GIS vector formats
2
, which makes

GRASS GIS interoperable also for vector data. Vector data in external data formats, which are supported by

OGR library, can be linked similarly to raster data, using v.external command. This command creates normal

GRASS vector map pointing to the vector data in external GIS formats. When reading this “map” the GRASS

vector library uses OGR library to read the vector data. Compared to raster data, the representation of the

vector data, accessed by OGR library in GRASS, is not so straightforward.

GRASS vector format is strictly topological. Vector features are points, lines, boundaries, and centroids.

In this paper we deal with 2D vector data, but GRASS also supports 3D vector data like volumes. Areas in

GRASS topological model are represented by boundaries and centroids. External ring of the area is built by

closed set of boundaries. Each valid area must contain one point (called centroid), located inside the area.

Centroids optionally hold attribute data attached to the area. An area can contain one or more holes

(in GRASS terminology “isles”).

Compared to GRASS, the OGR library is using completely different approach for vector data. The OGR data

model is non-topological. The OGR library implements OGC specification Simple Feature Access [3], 2D

vector data are represented by points, linestrings or polygons. Polygon is defined by an external ring, and

one or more inner rings. Inner rings define holes in the polygon. In other words, adjacent polygons do not

share common boundary. This boundary is stored twice in simple features model as a part of the external

ring which defines an outline of the polygon.

GRASS is able to access vector data in two levels. The vector data can be accessed without topology on the

first level. Most of GRASS vector commands require accessing data on the second level, ie. including

topology. Simply, topological access to the vector data is crucial for GRASS vector architecture.

When reading vector data by OGR library, the GRASS builds over simple features “pseudo-topology”.

Pseudo-topology holds topological information for simple features, which is required by most of the GRASS

commands. It's not true topology, boundary (ie. part of the external ring) for adjacent polygons is still stored

twice. As the result, when processing vector data in GRASS, the user is forced to convert simple features to

true topological format. In other words, to import vector data to the GRASS native format. This is not needed

when using GRASS-PostGIS data provider, which supports topological access to the vector data (see

section 5 for details).

4 GRASS-OGR DATA PROVIDER

GRASS-OGR data provider is a part of GRASS vector library (see fig. 1) which enables reading and writing

vector data in any GIS vector format, supported by OGR library. A link to the vector data can be established

similarly as for raster data.

Example for Esri Shapefile:

v.external dsn=/path/to/shp layer=geology

The command creates vector map 'geology' as a link to the Esri Shapefile layer stored in '/path/to/shp'

directory.

Example for PostGIS data:

v.external dsn=PG:dbname=pgis layer=geology

The command creates vector map 'geology' as a link to the PostGIS layer 'geology' stored in 'pgis' database.

2 OGR Library. Supported vector formats. http://gdal.org/ogr/ogr_formats.html

http://gdal.org/ogr/ogr_formats.html

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

Linked vector data can be accessed by any of GRASS commands like normal GRASS vector maps, with one

difference, vector data are accessed by OGR library as simple features. GRASS builds for such vector layers

pseudo-topology to access data correctly. As a pseudo-representation, the data can be still affected by

various topological errors or inconsistencies. For cleaning vector data, the user is forced to convert simple

features to the GRASS topological format. Working with external data in GRASS GIS is useful only for limited

number of operations. Topological access to simple features is pseudo-based, it will work eg. for

visualization purposes. True topological access to simple features affected by various topological errors

(overlapping polygons, self-intersections) will not work correctly. In other words, GRASS commands will

produce incorrect results.

GRASS-OGR data provider in GRASS 7 also supports so-called direct access to the data. The vector data

can be accessed by OGR library directly without need to create a link using v.external command. Example

for direct access (v.info prints basic metadata of the vector maps):

v.info map=/path/to/shp@OGR layer=geology (for Esri Shapefile)

v.info map=PG:dbname=pgis@OGR layer=geology (for PostGIS data)

Most of GRASS vector commands have two required parameters – map (name of vector map) and layer

(name of vector layer). When using direct access to external vector data, the parameter map is used for

OGR data source (datasource@OGR). The name is fully-qualified (name@mapset), the mapset is always

called OGR. This mapset is virtual, and it's reserved for direct OGR access only. The advantage of direct

access is clear, the user doesn't need to define links using v.external command. On the other side, pseudo-

topology needs to be built always when accessing the data, not only once when creating a link. So, direct

access is useful when accessing OGR layers not so frequently, or for very small datasets (building pseudo-

topology for larger dataset can take some time).

In GRASS 7 the OGR data provider also supports write access. The data can be directly written by GRASS

vector library to any data format, which is supported by OGR in write access. Output data format for vector

data can be defined by v.external.out (similarly for rasters, r.external.out).

v.external.out dsn=/path/to/shp format=ESRI_Shapefile

Any newly created vector data will be stored by GRASS vector engine directly in Esri Shapefile format

(located in directory '/path/to/shp' in this case).

 v.external.out dsn=PG:dbname=pgis format=PostgreSQL

In this example the vector data produced by GRASS will be written by OGR-PostgreSQL data driver to the

PostGIS database called 'pgis'.

When writing vector data in non-native data format, GRASS also defines a link to the created data to allow

accessing the data as normal GRASS vector maps.

5 GRASS-POSTGIS DATA PROVIDER

The GRASS-PostGIS data provider is new in GRASS 7
3
. It brings native PostGIS support to GRASS.

PostGIS is an open source project which enables to store and manipulate geospatial objects in PostgreSQL

object-relational database. The GRASS-PostGIS data provider supports reading and writing PostGIS data by

GRASS vector library without any external dependency (like OGR library). By default, the data provider

writes vector data in simple feature representation.

The major difference in comparison with GRASS-OGR data provider, which also enables reading and writing

PostGIS data through OGR-PostgreSQL data driver, is support for topological access to the vector data. To

sum it up, the GRASS-PostGIS data provider allows to write topological elements in PostGIS database using

PostGIS Topology extension [8]. PostGIS Topology was released as an official part of PostGIS project in

3 GRASS-PostGIS data provider. http://trac.osgeo.org/grass/wiki/Grass7/VectorLib/PostGISInterface

mailto:datasource@OGR
mailto:name@mapset
http://trac.osgeo.org/grass/wiki/Grass7/VectorLib/PostGISInterface

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

version 2.0 (April 2012). When writing topological vector data in PostGIS, the GRASS is using data model

defined by PostGIS Topology extension.

PostGIS topology data model is based on ISO standard 13249. The model defines only three topological

elements: nodes, edges, and faces. Geometry of topological elements is represented by simple features:

nodes as points, edges as linestrings, and faces as polygons. PostGIS Topology defines the data model and

also the set of functions to manage topological elements (see PostGIS manual [5] for details).

The data model used by PostGIS Topology and GRASS is different. GRASS defines more topological

elements compared to PostGIS Topology: nodes, lines, boundaries, centroids, areas, and isles. The

GRASS-PostGIS data provider allows conversion of topological elements between GRASS and PostGIS

data models, when reading and writing topological vector data. Currently only 2D vector data are supported.

When converting topological elements between GRASS and PostGIS data models:

 points are stored as isolated nodes,

 centroids are stored as isolated nodes,

 lines are stored as edges,

 boundaries are stored as edges,

 areas are stored as faces,

 isles are stored as faces,

When reading data from PostGIS topological schema, the GRASS vector library builds GRASS-like topology

based on nodes, edges, and faces stored in the database. Areas as well as isles are built by edges. When

modifying data, topological elements are converted to PostGIS-like data model and stored in the topological

schema. Topology attributes (like next left/right edge, or left/right face) are updated from GRASS-like

topology when closing connection with the database (and storing data).

Fig. 2. Topological composition of two areas with one isle
4
.

Topological composition (see fig. 2) of two polygons (second polygon has a hole) is represented in GRASS

data model by two nodes (n1, n2), two centroids (1, 2), and by four boundaries. (3, 4, 5, 6). These

topological elements form two areas (1, 2) and one isle. To be precise, an isle is also represented in GRASS

data model as an area. Areas 1, 2 form an isle. So, in this case GRASS will report three areas and two isles.

The same topological composition in PostGIS data model is represented by two nodes, four edges and three

faces. First two faces define the polygons, the third face represents a hole.

4 GRASS Wiki. PostGIS Topology. http://grasswiki.osgeo.org/wiki/PostGIS_Topology

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53698
http://grasswiki.osgeo.org/wiki/PostGIS_Topology

GIS Ostrava 2013 21. – 23. 1. 2013, Ostrava

The support for storing topological vector data in PostGIS is new in GRASS (and also new in PostGIS [6]),

the GRASS-PostGIS data provider is currently under development, ready for testing. It's also planned to

extend the data provider to store full GRASS-like topology in PostGIS.

Topological output for PostGIS format is defined similarly as simple features access by v.external.out

command. To enable topological access, the user provides options parameter (TOPOLOGY=YES). By

default, this option is set to NO (no topology, ie. simple features access).

v.external.out dsn=PG:dbname=pgis format=PostgreSQL options=”TOPOLOGY=YES”

As a result, GRASS vector library will store newly created vector data in PostGIS database as topological

elements, instead of simple features. The data can be accessed as normal GRASS vector maps.

When reading data (or creating links to the data using v.external), GRASS checks, if there is any topological

schema in the database, which is associated with the given feature table. If such topological schema is

found, GRASS reads topological elements from the schema, or it tries to read simple features from geometry

column in the feature table.

GRASS 7 also comes with the new module v.out.postgis [7], which enables export of GRASS vector data to

PostGIS database as simple features or topological elements.

CONCLUSION

Integration of GDAL/OGR library in GRASS is crucial for the interoperability. Thanks to GDAL/OGR, GRASS

GIS supports in version 7 more than one hundred raster formats and almost eighty vector GIS formats.

GRASS 7 also allows to write raster and vector data directly in various GIS data formats, using GDAL/OGR

library.

Vector interoperability was significantly improved in GRASS 7 by implementing native PostGIS data provider,

which allows to store simple features as well as true topological vector data in PostGIS database.

Topological access to the vector data is crucial for GRASS vector architecture, the GRASS-PostGIS data

provider allows real integration of PostGIS as data storage in GRASS GIS.

REFERENCES

[1] Westervelt J. (2004) GRASS Roots, Free/Libre and Open Source Software for Geoinformatics: GIS-
GRASS Users Conference 2004, Sept. 12-14, Bangkok, Thailand.

[2] Blazek R., Neteler M., and Micarelli R.. (2002) The new GRASS 5.1 vector architecture. Open source GIS
- GRASS users conference 2002, Trento, Italy, 11-13 September
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Blazek_Radim.pdf

[3] OGC. Simple Features Access. (cit.2012-12-16)

http://www.opengeospatial.org/standards/sfa

[4] GRASS Wiki. Working with external data in GRASS 7. (cit. 2012-12-16)
http://grasswiki.osgeo.org/wiki/Working_with_external_data_in_GRASS_7

[5] PostGIS. PostGIS Topology Manual. (cit. 2012-12-16)

http://www.postgis.org/documentation/manual-2.0/Topology.html

[6] Santilli S. (2011) Topology with PostGIS 2. PostgreSQL Sessions, Paris, 23 June.

http://strk.keybit.net/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf

[7] Martin Landa and the GRASS Development Team. v.out.postgis manual page. (cit. 2012-12-16)
http://grass.osgeo.org/grass70/manuals/v.out.postgis.html

http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Blazek_Radim.pdf
http://www.opengeospatial.org/standards/sfa
http://grasswiki.osgeo.org/wiki/Working_with_external_data_in_GRASS_7
http://www.postgis.org/documentation/manual-2.0/Topology.html
http://www.postgresql-sessions.org/en/2/start
http://strk.keybit.net/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf
http://grass.osgeo.org/grass70/manuals/v.out.postgis.html

