
GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

TOWARDS A SOLUTION FOR THE PUBLIC WEB-BASED GIS MONITORING AND ALERTING
SYSTEM

Jitka, HÜBNEROVÁ

Institute of Novel Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and
Interdisciplinary Studies, Technical university of Liberec, Studentská 2, 461 17 Liberec, The Czech Republic

Jitka.hubnerova@tul.cz

Abstract

This paper deals with the issue of interoperability of heterogeneous sensor systems and the availability of

their data from a global perspective. We show the application of previously developed WEDA architecture

style into a GIS based experimental system and we present the performance analysis results of the system.

The paper also presents its strengths as being a firewall-friendly, web-standards based solution that can be

plugged into existing applications without needing to completely rewrite them (which is good when using

OGC Sensor Web Enablement services). The paper compares the new style with styles which are used

today in OGC Webservices. We then present an alpha version of the experimental system with eventing

enhancements that are available with the new style. These principles will be applied from the experimental

system to the final draft specification and API after more tests. If such a web-service standard meets the new

binding possibilities, alerting will become widely accessible and GIS viewers and sensors can improve user-

experience, loading/publishing sensor data or loading pipelined WMS tiles as well.

Keywords: sensor web, web services, web sockets, performance, complex event processing

INTRODUCTION

As the amount of sensor data is growing, more people want to see the data from the sensors online via the

web. OGC SWE standards [1] enable the web-based discovery, exchange and processing of sensor

observations, as well as the tasking of sensors systems. SWE is technology to enable the implementation of

Sensor Webs. Wildfires, river basins, tsunami alerts, and environmental risk management are just some of

the uses of OGC’s interoperability framework for web-based access and control of sensors and sensor data.

One of the SWE standard’s services, the relatively new Sensor Observation Service (SOS, 2008), provides

an API (application programming interface) that allows web servers to collect data from subscribed sensors

and public to explore their nearly real-time data. The goal of OGC Sensor Web Enablement SOS is to

provide access to observations from plug & play sensors and sensor systems in a standard way that is

consistent for all sensor systems including remote, in-situ, fixed and mobile sensors. SOS standard is based

on the REST (SOS 1.0) or SOAP (SOS 2.0) protocols. SOAP/REST protocols are the implementation of web

services (and web services are a well-known application of SOA - service oriented architecture). Messages

are exchanged using a request–reply pattern and interaction is synchronously initiated by client. The

question is if the standards are prepared today to be as interactive and interconnected to be usable from a

global perspective. Many sensor systems are built at a local level and their read-only data is published on the

web. There is a large space for linking these autonomous systems to the big sensor web and evaluating

different event types with some higher automated logic or with preferences defined by each user. As with

other SOAP web services, performance may also become an issue and can negatively impact the user

experience. Each request uses a shared HTTP persistent connection over a single TCP connection (in the

best case) and waits for its response before another request can proceed. Web browsers open a memory-

reasonable number of connections (for example 6 for Chrome) to partly overcome such limitations and

developers use AJAX that prevents UI blockage (browser communicates synchronously). But the

performance problem and other web service limitations still remains. At the time of writing, SOS standard are

becoming known in web mapping software and first implementations exist (for example OpenLayers

javascript library provides a very limited functionality for requesting the SOS service). So as we can see, for

Sensor Observation Service, the mechanism is publicly available and open, which can overcome its other

disadvantages. As for other OpenGIS standards, we think that this specification will become broadly popular

in future. However, because of technology limitations, this web service stack cannot be used for real-time

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

monitoring and alerting in particular. In the next few chapters we want to describe our approach to overcome

these limitations and also to present a version of an experimental system that we use to measure its

performance parameters and to tune the specification draft.

In 2003, Gartner introduced [4] a new terminology to describe a design paradigm based on events: Event-

Driven Architecture (EDA). EDA [5][9] defines a methodology for designing and implementing applications

and systems in which events are transmitted between decoupled software components and services. Event

objects are sent from an event source to the event consumer in asynchronous messages at times

determined by the event source. Pushing event objects proactively reduces latency (the time required to

respond to an event), compared to waiting for consumers to pull event objects (for example, by repeatedly

asking if any new data is available = polling). EDA had many forms during the years when it was used in

local networks and now it is often discussed in relation to SOA and how these two can interact. This can be a

very interesting feature when used in a World-Wide-Web environment for many uses and especially for

sensor data publication and monitoring problems. Theoretical discipline (without practical application) which

tries to combine these architectures is called SOA 2.0 (SOA 2.0 = SOA + EDA). Only local area network

(LAN) monitoring and alerting systems are widely used today. One type of their output is sending SMS/e-mail

messages to the specified group of users (e.g. crisis team) if some threshold is exceeded. This system is

good for crisis team disaster early warning and is built with reliability in mind. Such systems are not available

to the public today. For the public, another OGC Sensor Web Enablement standard was proposed and

named Sensor Alert Service (and a very new Sensor Event Service). These SOA web service specifications

have some disadvantages in transport binding which is firewall unfriendly (XMPP protocol for SAS) or

requires the consumer to have a public endpoint address (SES). As we know, IPv4 is still the leading

specification and not many users own such an address. From a global public monitoring and alerting

perspective, these solutions are still weak for the task (and as a result they are not well-known).

The motivation for our work was dealing with performance issues of web services at first. After we built an

API and experimental GIS-based system, new opportunities and topology enhancements were discovered.

In the first part of the text we introduce some fundamentals of the proposed style to understand the concept

and contribute with a comparison of the new concept with the style used today. Next we will describe the

experimental system and publish the results of performance analysis. We would like to create another

experimental system in future which should show a reduction in the time needed to load WMS tiles from the

GIS server by pipelining enhancements of developed API (but that is not topic of this paper). This will show

us how pipelining the capabilities of our architecture style can improve the performance of such a very

common use. Finally we will describe topology and event processing enhancements which are interesting

especially for “GIS on the web” use-cases and can be used for building a publicly available alerting solution

(deployable to the cloud SaaS environment). The resulting description will be transformed to the draft

specification and API after more tests on the experimental system.

CHANGING ARCHITECTURE STYLE

The Weda architectural style is a hybrid architectural style that we have derived from other network-based

standards, such as web services [14] and HTML5 web-sockets [12] to get a practical real-time SOA 2.0 [10]

solution for WWW. It provides a uniform connector interface to the client and server implementers allowing

them to extend their existing web services (SOAP 1.2, REST, POX) with a new type of endpoints and binding

while keeping their HTTP server endpoints to legacy clients alongside Weda endpoints.

Fig. 1. Blackbox overview of Weda

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

New possibilities grew with the arrival of Websockets. Websockets is a technology that provides bi-

directional, full duplex communication over a single TCP socket. It is designed to be implemented in web

browsers and web servers and traverses firewalls, proxies, and routers seamlessly and leverages Cross-

Origin Resource Sharing (CORS). The communication channel can be protected against eaves-dropping

with TLS, much like HTTPS. The default ports are 80 or 443, so enterprises are not required to open

additional ports in their firewalls.

Comparison of Web services architectural styles

We can identify three classes of Web services:

 REST-compliant Web services, in which the primary purpose of the service is to manipulate XML

representations of Web resources using a uniform set of “stateless” operations

 RPC-compliant Web services, in which the service may expose an arbitrary set of operations.

 WEDA-compliant Web services, in which the service can use asynchronnous message passing

which can provide us eventing behaviour as well as call & return.

Table 1. Comparison of Web services architectural styles.

attribute WEDA-style REST-style RPC-style

architecture SOA 2.0 SOA SOA

distributed
system type

hybrid (message passing
and call / return)

call / return call / return

addressability multiple endpoints
per service (clients, server)

unique URI address per
resource

one endpoint
per service

common
transport

HTML5 WebSockets HTTP HTTP

state statefull stateless stateless

flow con-
troll

asynchronous synchronous synchronous (over
FW-friendly transport)

process com.
models

one-to-one, one-to-many,
many-to-many

one-to-one one-to-one

latency best (after improving
admission and flow control)

good good

throughput extremely high bad bad

Instance context per session per call per call

scalability best in terms of con-
current clients

good good

coupling loose (only event type
definitions in duplex
contracts)

functionally tightly cou-
pled (MIME types in
self-descriptive resource
representations)

functionally tightly
coupled (operations
and data types in
contract)

data inter-
face

inherited (no restriction) generic (e.g. HTTP
verbs, MIME)

service description
(e.g. WSDL)

common
data format

inherited (no restriction) HTTP resource repre-
sentation, XML, JSON

SOAP

deployment
topologies

enterprise service bus hub and spoke
(centralized)

hub and spoke (central-
ized)

coordination ESB’s native functions for
orchestration and choreog-
raphy, no scheduler

resource-oriented
workflows (theoretical -
atom, rss, dynamic
hyperlinks in practice)

service-oriented
workflows, scheduler
required

coordination ESB’s native functions for
orchestration and choreog-
raphy, no scheduler

resource-oriented
workflows (theoretical -
atom, rss, dynamic
hyperlinks in practice)

service-oriented
workflows, scheduler
required

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

We developed an informal (IANA or RPC based) [8] as well as a formal (timed automata) specification [7],

whose purpose is to ensure the interoperability between Weda implementers. The list of topics covered is:

Weda gateway, Weda endpoints (also for non-public client endpoints), Addressing, Weda transport binding,

Contracts, Weda subprotocol, Weda service description, model checking and verification. All of the

components were implemented into the beta version of Weda API. The aim of future development is to

provide an easily pluggable library in more programming languages, which has a simple interface but robust

and self-contained implementation.

EXPERIMENTAL SYSTEM

We have built two experimental “GIS on the web” systems with WEDA API. Experience and data obtained

from these experiments were used for calibrating the model. Both experimental systems use the same

server-side implementation and only client implementations differ as one was developed as a thick client and

the other as a thin client.

Fig. 2. Overview of experimental systems

Server side

The server side consists of a database layer, data access layer, web-service and server-side Weda API.

 Database layer - Sensor data is stored in the spatial database Observations Data Model (ODM).

Version 1.1 [13] is a generic template for the observations DB. For example the SpatialReferences

table provides specifications of the location of an observation site to record the name and EPSG

code of each spatial reference system used. The database was running inside a MSSQL 2008

environment. We used more types of data, for example hydrologic data from CUAHSI-HIS.

 Data access layer - Our data access layer provides us mapping of conceptual schema to data

schema, isolation from the relational database and database schema and other features.

 Web service - As we wanted to be sure that the existing service could be extended, we chose OGC

Sensor Observation Service [11] as part of our experimental system. The server solution consists of

the implementation of standard SOS webservice without changes in contracts and business logic

(the goal). For spatial data, Renci (Renaissance Computing Institute) OpenGIS implementation was

used to bring us API for using Gml, Ows, SensorML or Tml specifications. In the first version of

samples we use its Core and Enhanced extensions with GetCapabilities, DescribeSensor,

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

GetObservation and GetFeatureOfInterest operations. In the future version transactional extension of

SWE SOS can be implemented especially with a proposal of one-way InsertObservation operation

and broadcast event that new observation arrived for all clients.

 Weda API - Other projects undergoing development are WedaAPI and layers of the Weda eventing

processor (will be integrated to WedaAPI after more tests). The WebSocket server used is RFC6455

Super-WebSocket implementation. The Weda eventing processor integrates a Complex event

processing engine NEsper – the widely used CEP engine offering runtime for .Net. CEP server runs

independently and has its own long running lifetime over the requests. REST-compliant Web

services, in which the primary purpose of the service is to manipulate XML representations of Web

resources using a uniform set of “stateless” operations

 RPC-compliant Web services, in which the service may expose an arbitrary set of operations.

 WEDA-compliant Web services, in which the service can use asynchronnous message passing

which can provide us eventing behaviour as well as call & return.

Thin client

Figure 3 shows the web client interface of our thin-client connected to the server. Both clients read the geo-

spatial data from the OGC SOS service by Weda ChannelStack - transport & message binding and subpro-

tocol. This client acts as GIS Web map reader with WMS and SOS layers. It is implemented with ASP.NET

MVC3 and JavaScript using OpenLayers. We extended its Protocol.SOS javascript library to be capable of

connecting to the Weda endpoint. The use for the client is as a public GIS Viewer system which presents

SOS service data graphically upon the public WMS layer while that data is loaded over Weda. End develop-

ers can build a nice viewer with many features according to Weda capabilities. This client was not consid-

ered as a benchmarking environment. Nevertheless some response time logging is contained in source so

the user can optimize the application after displaying the response time information in the browser’s console.

Thick client

Figure 4 shows the desktop client interface of our thick-client. It is implemented in C#.Net Winforms. The

desktop client application was extended to be a load testing tool. As Websocket is a new protocol, there are

no load testing tools that can act over WebSocket and none extensible with some subprotocols. This client

allows us to do real benchmarks of Weda against REST and SOAP over HTTP SOS service. Legacy

SOAP/REST endpoints are also invoked and used in benchmarks as baseline.

Fig. 3. Experimental system with thin client interface

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

Fig. 4. Experimental system with thick client interface

PERFORMANCE ANALYSIS

We measured response time instability of Weda by invoking number of requests (according to SOS GetCa-

pabilities, DescribeSensor, GetObservation and GetFeatureOfInterest operations) from the thick client appli-

cation and collecting the responses with metadata about server processing times and other parameters

(such as 20kB amount of transferred data per request etc.).

The load generator was hosted on 4xIntel Xeon running at 2.5 Ghz, Windows 8, 2GB of RAM, 1Mbps

downlink network connection and 100Kbps uplink network connection. The location of the load generator

was 4 network hops away from the server hosting the service. Reverse proxy (no caching) was placed be-

tween the client and server. The average packet round trip time was 33 ms and constituted less than 1% of

the service time. The server was hosted on an Intel Core i7 2670qm running at 2.2 Ghz, 4GB DDR3

665MHz, Windows 7 professional sp1 64bit. The database server (MSSQL 2008 R2) was running on the

same host as the Weda server so its latency is included in total amount of RPT. It was found that RPT times

mainly consist of latency of data access layer (99%). The test case for measuring response time instability

has been defined with constant payload of GetCapabilities operation invoked at OGC SOS webservice.

Every 10s for 3 hours a request was sent and results were measured to give us more than 1000 samples.

The server processed each request by proper serialization at each layer up to the bottom data access layer.

Backward propagation of results was packed into response frames by Weda API and metadata about server

processing times was glued into the response. An illustration of setup and measuring points can be seen in

figure 5.

RTT includes a time for request forwarding achieved by our reverse proxy. This was used to simulate such a

device’s delay.The Weda architectural style is a hybrid architectural style that we have derived from other

network-based standards, such as web services [14] and HTML5 web-sockets [12] to get a practical real-

time SOA 2.0 [10].

RT = T4 - T1 (1)

RPT = T3 - T2 (2)

RTT = (T2 - T1) + (T4 - T3) = (T4 - T1) - (T3 - T2) = RT - RPT (3)

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

Fig. 5. Benchmark setup

Performance trends and variance results are shown in figure 6. It can be seen that response times are

constant for 50% (1600-1700ms) samples. 73% of the sample’s RT were around the 95th percentile. 26% of

samples have uncertain response time varying from 2s to 11s (four times more than average value). RTT is

the main part of RT value. Its distribution is very similar to RT as 48% of RTTs are between 1600 and

1700ms. One small peak can be found at 4.5s where 7% of samples are situated.

Table 2 shows the statistics of the test. A ratio between standard deviation and average value is used as an

uncertainty measure. From the table we can see that RT and RTT have a relatively small variance but RPT

has significant instability which does not affect the final RT by much.

A very small amount of samples are significantly affected by RPT giving more than 1s to total RT. From this

point there is no chance to significantly improve performance by improving serialization technique (except

adding the compression) or dealing much with the implementation. In our other work we use these results to

predict response time instability formula.

Table 2. Performance statistics: RT, RPT, RTT

 Min [ms] Max
[ms]

Avg [ms] 95th
[ms]

Std.dev. Std.dev/Avg [%]

RPT 10 1280 31 18 54 940

RTT 1580 10754 2197 1630 1244 56.6

RT 1608 10773 2258 1669 1243 55.8

ping RTT 32 367 40 35 3 1.7

Baseline benchmarks

We performed many benchmark measurements to compare Weda against REST and SOAP/RPC web

services. These results and comparative graphs are out of the scope of this paper, so here I only wish to add

some findings on interesting quality attributes.

 Findings on the throughput attribute - from “burst-based test cases” we can learn that synchronnous

styles (SOAP over HTTP and REST) can only achieve a small amount of turns compared to Weda-

style. Weda-style has a 40-times higher throughput, but as such it is more susceptible to DDoS

attacks without a robust admission control mechanism (tests ran without any admission control

mechanism implemented). A great way of dealing with overwhelming issues is to add an admission

control mechanism at each input queue. It is a matter for discussion if such a mechanism should be

required directly in WebSocket specification (not in Weda-style).

 Findings on the scalability attribute - very interesting results were obtained from the “constant count

of samples per burst test case,” which suppressed the differences caused by asynchronous or

synchronous transport. We saw that throughput increases exponentially with the number of clients

for Weda-style. RPC and REST-styles have their peak-throughput relatively low at a count of 6

clients (each client invoked exactly 10 samples per burst every 1s). Weda-style proves that it is more

scalable in terms of concurrent clients.

 Findings on the response time attribute - peak-throughputs can negatively impact Weda-style (the

next version should deal with it with an admission/flow control mechanism). To suppress this

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

behaviour we prepared a test case where conditions were set in a way leading to very similar

throughput behaviour (we prevented Weda-style to send / process more samples than other styles).

From the results we obtained that Weda’s 90th percentile response time is lowest and unaffected by

incrementing client count unlike the RPC and REST-style. This test case shows that Weda-style

responsiveness is a little bit better than for RPC and REST-style.

Fig. 6. Performance trends and probability density of RT, RTT, RPT

EVENT PROCESSING ENHANCEMENTS

The main building block of web based GIS monitoring and alerting solutions is contained inside the Weda

specification – the use of duplex services. This enables message exchange patterns in which both endpoints

can send messages to the other independently. A duplex service, therefore, can send messages back to the

client endpoint, providing event-like behaviour. Duplex communication occurs when a client connects to a

service and provides the service with a channel at which the service can send messages back to the client.

We can benefit from the client’s Weda endpoint which is accessible from the server. To implement the push

mechanism, the client must implement a client-specific contract called a callback contract. As we created our

experimental system before the SES standard was proposed, our experiments contain an easier WS-

Eventing [2] contract (other WS-Notification [6] OASIS-Standard is bind able to the model). There are three

types of services needed in enhancements:

1. Subscription and notification management

2. Default public integration point for sensors, monitoring systems and other event sources

3. Integration point for admin tools for statement / topic management

As shown in Figure 7, the Weda event processor consists of a dispatcher component, four event processing

services which can be running on separate instances and one CEP engine. Complex event processing is

technology to transform single, low-level events into aggregated, high-level events by looking across event

streams. Many message types are transmitted here as SOAP management operations, events, subscription

messages, registered EPL rules and rule actions. Implementation of eventing enhancements is now

integrated in an experimental system only. After stabilization of API and testing with SES specification, it will

be integrated directly into WEDA API. In the scope of this paper we will only highlight some of the

components that build together the practical implementation of SOA 2.0 architecture.

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

Fig. 7. High-level process view of Weda event processor and its relationship to EDA components

 For example the Notification manager component reacts on rule actions from the CEP server and

parses the list of subscriber’s topics to make the correct push of an event to appropriate event sink.

Events are defined by the end application. An example of event-type (SASAlert) follows:

<?xml version="1.0" encoding="UTF-8"?>

 <SASAlert xmlns="http://www.opengis.net/sas"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><Header>

 <AlertMessageStructure>

 <sas:QuantityProperty>

 <sas:Content definition="urn:ogc:def:property:OGC:Temperature"

uom="Cel">-0.9</sas:Content>

 </sas:QuantityProperty>

 </AlertMessageStructure>

 </Header>

 <Body>51.96 7.607 70.0 2009-10-17T02:27:04Z 0 30</Body>

 </SASAlert>

 Event generator integration point - EventReceiver metadata service is the main integration point for

monitoring systems, network sensors and other event generators (event sources) which send an

event into the CEP server for further processing.

 Statement manager metadata service is an integration point for any administration tool that allows

definition of topics. Thanks to the StatementManager service, experts can provide a set of rules that

may change over time, due to the dynamic nature of the domain. Client application behaviour can be

changed only by changing the set of rules, nothing has to be programmed. An example rule provided

as EPL statement follows. This example statement fires as soon as a LocationSensor of a certain

device does not fire events for 10 seconds. Every user can then subscribe for this topic.

SELECT count(*), Identifier FROM LocationSensor.win:time(10 sec)

GROUP BY LocationSensor.Identifier HAVING count(*) = 0

CONCLUSIONS

In this work, the author presents the application (experimental system) of the WEDA architectural style for

developing “GIS on the web” solutions. The paper also shows performance results measured on the system.

It shows that RT is stable and good enough to be used in real-time and also summarizes other benchmark

findings from a number of different test cases. The system can improve the performance of sensor web

services and thanks to the presented “event processing enhancements” it extends messaging capabilities for

publicly available monitoring and alerting sensor webs. There are many applications for this system from

GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava

small ones (e.g. warning the public or farmers within a range of 10 km before an approaching storm or hail)

to bigger ones (monitoring of emissions in real time by informing the public to close windows and alerting the

relevant authorities after exceeding permitted limits) or building automata that can warn before some critical

event occurs (if water exceeds the threshold at Liblín and Zvíkovec and it is raining in Beroun, then clients

are alerted from Beroun to Praha 11-13). With this technology, results from very different sensor types can be

processed together and cross calculated. Users can define their own preferences for what to monitor and

alert for. The resulting trend analysis can be made available on a global level and deployed in the cloud

environment.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education of the Czech Republic within the SGS project no.

78001/115 on the Technical University of Liberec.

REFERENCES

[1] Botts, M. and Percivall, G. and Reed, C. and Davidson, J.(2008) OGC sensor web enablement: Overview

and high level architecture. In Nittel, S. and Labrinidis, A. and Stefanidis, A. (ed.), GeoSensor Networks, vol-

ume 4540 of Lecture Notes in Computer Science, Berlin, 17-20 Sept. 2007, Springer, pages 175–190.

[2] D.Box, Cabrera, L.F. et al., Web services eventing (WS-eventing) specification, August 2004, available:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-eventing/WS-Eventing.pdf, Oct. 2013.

[3] Clements, P. and Kazman, R. and Klein M. (2001), Evaluating Software Architectures: Methods and Case

Studies, Addison-Wesley, Boston

[4] COM-20-2737 (2003) Event-driven applications: Definition and taxonomy, Gartner, Stamford, USA

[5] Etzion, O. and Chandy, M. and Ammon, R.V. and Schulte, R. (2006) Event-Driven Architectures and

Complex Event Processing, IEEE International Conference on Services Computing, Sept. 2006, IEEE

[6] Graham, S. et. al., Web Services Notification (WS-Notification) Version 1.0., 2006, available:

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn#technical, Oct.2013

[7] Hübnerová, J. (2013) Model based analysis and formal verification of WEDA architectural style, Proceed-

ings of IEEE International Conference on Informatics & Applications (ICIA), Poland, September 2013, Po-

land, IEEE, Poland, ISBN 978-1-4673-5255-0

[8] Hübnerová, J. (2013) Weda - new architectural style for world-wide-web architecture, Proceedings of

ISAT 2013, 34th International Conference Information Systems Architecture and Technology, September

2013, Poland, Institute of Informatics Wrocław University of Technology, Poland, ISBN 978-83-7493-804-4

[9] Chandy, K. M. and Charpentier, M. and Capponi A. (2007) Towards a theory of events, In Proceedings of

the 2007 inaugural international conference on Distributed event-based systems, DEBS ’07, ACM, New York,

NY, USA, pages 180–187

[10] Levina, O. and Stantchev, V. (2009) Realizing event-driven SOA. In: Perry, M. and Sasaki, H. and Eh-

mann, M. and Bellot, G. and Dini, O. (ed.), Fourth International Conference on Internet and Web Applications

and Services, Venice/Mestre, Italy, 24-28 May 2009, IEEE Computer Society, Washington, pages 37–42

[11] OGC 06-009r6 (2008) Sensor observation service v.1.0.0. OpenGIS implementation standard, Open

Geospatial Consortium

[12] RFC6455 (2011) The WebSocket protocol, IETF, California

[13] Tarboton, D. and Jeffery, S. and Horsburgh, T. D. and Maidmen J.S.. Cuahsi community observations

data model (ODM), version 1.1, design specifications, Oct.2013

[14] W. W. Group. Web Services Glossary, Feb. 2004, available: http://www.w3.org/TR/ws-gloss/, Oct.2013

