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Abstract 

The problem of multi-hazard mapping in urban areas is relevant for preventing and mitigating 

the impact of natural and human-induced disasters and it is a very complex one because 

different expertises have to be put together. Single-hazard maps may be produced by taking 

advantage of Machine and Deep Learning techniques, once the factors conditioning the 

susceptibility of the hazard are defined and relevant data inventory is collected. From a 

proper combination of single-hazard maps, a multi-hazard map may be derived. The 

objective of this study is the identification of the conditioning factors for the most relevant 

natural and human-induced hazards in an urban context through an exhaustive literature 

review. All factors found in the literature were methodically listed in tables and order of 

importance was assigned to each factor depending on the number of citations of each paper 

and on the number of publications in which such a factor was taken into account. The 

resulting list will be then validated with domain experts. The obtained results can be used 

for the production of single and multi-hazard susceptibility maps in urban areas. 

Keywords: conditioning factors, multi-hazard mapping, urban context, Machine and Deep 

Learning 

INTRODUCTION 

Natural and human-induced hazards are extreme phenomena that may have severe impacts 

on both the natural and man-made environment. Overpopulation and urban development in 

areas that are susceptible to this kind of disaster lead to an increased impact on the 

environment and communities (Skilodimou and Bathrellos, 2021). Therefore, proper urban 

planning is of paramount importance to prevent the negative consequences of natural and 

man-made disasters as well as to mitigate the associated risk. Despite the majority of the 

published studies being focused on the analysis of single hazards, urban areas are typically 

susceptible to numerous disasters that may occur simultaneously or consecutively 

(Skilodimou, 2019). For this reason, the development of a state-of-the-art method for an 

effective multi-hazard assessment is crucial. This is especially true for the urban centers, 

where the amount of exposed and vulnerable elements, such as people, settlements, and 

infrastructures, is particularly significant. As multi-hazard maps are ultimately derived from 

a proper combination of single-hazard maps (Skilodimou et al., 2019; Nachappa et al., 

2020), a thorough understanding of the factors driving the susceptibility of the single hazards 

in a certain urban area is key to an exhaustive multi-hazard assessment. To that end, this 
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work investigates through an in-depth literature review the conditioning factors that play a 

role in the most typical hazards that may threaten the urban environment. The obtained list 

of conditioning factors is promising to support the production of single and multi-hazard 

susceptibility maps at the urban level by means of Machine and Deep Learning techniques. 

This work is developed in the framework of the HARMONIA project, which aims at providing 

stakeholders and urban planners with a decision support system to improve urban resilience 

and mitigate the effects of climate change in four European cities (Milan, Sofia, Ixelles, and 

Piraeus). 

METHODS 

The following natural and man-induced hazards were considered in this study: earthquakes, 

ground subsidence, landslides, fires, floods, droughts, extreme precipitations, heat islands, 

air pollution, and danger of explosion. The conditioning factors playing a role in the 

occurrence of each hazard were identified based on an extensive scientific literature review. 

The research was limited to the most recent publications (from 2017 to 2022): taking 

advantage of the results obtained by previous research works, they may be considered best 

exhaustive and state-of-the-art. The method employed for the production of susceptibility 

maps, summarized through a diagram in Fig. 1, is common in most of the publications: a list 

of conditioning factors for one or a few hazards is defined; data about conditioning factors 

and past events occurrences is collected either from national inventories or exploiting 

modern surveying techniques; data regarding events occurrences is split into a training and 

a validation dataset in the modeling process; Machine and Deep Learning techniques are 

adopted to produce susceptibility maps and results are finally validated. Despite most of the 

studies sharing a common list of conditioning factors for each hazard, some differences were 

found in the different publications. To be as exhaustive as possible, all conditioning factors 

reported in the literature were taken into consideration. They were methodically reported in 

tables listing the type of conditioning factor (e.g. hydrological, meteorological, 

topographical), the corresponding physical variable (e.g. groundwater level, maximum daily 

temperature, slope angle), its unit of measurement (e.g. meters, Celsius degrees), and the 

papers where a reference to such a factor was present. A method for selecting the most 

relevant conditioning factors was conceived and applied. As a first step, an order of 

importance was assigned to each factor depending on the number of publications in which 

it appeared: a higher number of publications, a higher degree of relevance; secondly, the 

number of citations of the single papers was taken into account; therefore, the conditioning 

factors appearing in highly-cited publications were considered as most relevant. 
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Fig. 1. Methodology workflow for the susceptibility mapping of individual hazards. 

RESULTS AND DISCUSSION 

A consistent number of conditioning factors was found in the literature. In order to better 

understand which type of variables affects the susceptibility for the different hazards, 

conditioning factors were grouped into categories (e.g. geological, hydrological, 

meteorological factors). This raw subdivision allowed pointing out similarities and differences 

among the various hazards. For instance, the susceptibility to droughts and extreme 

precipitations is mostly affected by meteorological variables (e.g. temperature). 

Hydrological, geological, topological, and land cover variables are common conditioning 

factors to the main hydro-geological hazards (floods, ground subsidence, landslides, and 

fires). Susceptibility to earthquakes is conditioned by similar types of variables, namely 

topological (e.g. slope), geological (e.g. distance to faults), and seismic (e.g. epicenters 

density) factors. More singular variables affect the susceptibility to air pollution and heat 

islands. Despite many meteorological factors being common to both hazards, heat islands 

are strongly conditioned by the characteristics of the city in terms of structure, anthropogenic 

heat, and city canyons, whereas air pollution is strictly related to the type and amount of 

emissions along with different socio-economic variables (e.g. industrial activity). The 

analysis brought to light the relevance of land cover in conditioning the majority of the above-

cited hazards; therefore, the type of surfaces constituting the urban environment is pivotal 

in determining the city’s predisposition to a series of natural and human-induced disasters. 

A singular case is constituted by the danger of explosions; the main conditioning factor for 

such a technological hazard is the presence of companies and industries dealing with 

potentially explosive chemical substances; national or local cadasters of high-risk industries 

are fundamental for proper hazard mapping. For the sake of clarity, Fig. 2 reports a brief and 

non-exhaustive summary of the conditioning factors per hazard. Complete tables with 

references to the papers found in the literature will be provided and illustrated in the paper. 

As discussed in the previous section, a selection of the most relevant conditioning factors 

was performed based on the number of publications in which each factor appeared and the 

number of citations of each publication. Nevertheless, the proposed list will be discussed 

with domain experts that are partners of the HARMONIA project. Furthermore, a non-
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negligible limitation to the choice of conditioning factors is given by the problem of data 

availability. Only factors for which data is available may be included in the analysis; this is 

strictly linked to the case study under consideration and the type of variable. As a future 

development of this work, data about conditioning factors and historical hazard occurrences 

will be collected, and the most suitable Machine and Deep Learning techniques will be 

selected and applied for the production of single and multi-hazard maps for the four target 

European cities (Milan, Ixelles, Sofia, and Piraeus). 
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Fig. 2. Summary of conditioning factors for each hazard. 
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