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Abstract 

Urban green space mapping based on satellite imagery is now possible more frequently and 

over shorter timespans thanks to dense time-series of open and free Earth observation (EO) 

images (e.g. the Copernicus Sentinel-2 mission). Despite this data availability, many 

approaches still focus on identifying the annual maximum extent of urban green spaces 

instead of utilising the entire dense image stack to characterise seasonal dynamics. We aim 

to temporally inform urban green space delineations, which could be relevant for 

applications like urban heat mitigation or citizens’ urban green perception. We present a 

semantic EO data cube approach that allows ad-hoc, browser-based vegetation mapping 

for custom areas and timespans using transferable semantic models. We demonstrate the 

approach using a Sentinel-2 semantic EO data cube covering Austria, which makes use of 

every available Sentinel-2 observation since 2015 and where non-valid observations (e.g. 

cloud) can be masked out on an individual pixel basis to increase the number of valid 

observations for shorter timespans rather than relying on image-wide metadata. While we 

show results for the city of Vienna, the approach is transferrable to anywhere in Austria using 

the same infrastructure, or any other similar semantic EO data cube worldwide. 
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INTRODUCTION 

Urban green space (UGS) is valuable for wellbeing and health and provides environmental 

benefits, such as mitigating urban heat or retaining storm water (Lee et al., 2015). There is 

a need for permanently monitoring urban green space and relevant changes in line with the 

United Nations Sustainable Development Goals (SDG), especially SDG 11, to improve 

availability of green spaces in cities and strengthen UGS’s role in climate change mitigation. 

UGS mapping based on satellite imagery is now possible at a higher spatial resolution and 

over more frequent and shorter timespans than ever before due to the availability of open 

and free Earth observation (EO) images (e.g. Copernicus Sentinel-2 data, Landsat mission). 

Nevertheless, most approaches that map UGS mainly focus on the maximum spatial extent 

during a year. For example, Huang et al. (2021) analysed UGS for an enormous amount of 

1039 cities worldwide, making use of the greenest pixel compositing method looking for the 

maximum extents of vegetation cover based on machine learning methods. Corbane et al. 

(2020) used annual greenest pixel composites for Landsat data on the Google Earth Engine 
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platform in combination with the Global Human Settlement Layer to derive UGS and UGS-

change by applying NDVI thresholds.  

We focus on a different approach to mapping UGS, making use of the dense image stack 

to capture seasonal effects that could be relevant for applications like urban heat mitigation 

(Žuvela-Aloise et al., 2016) or investigating the perception of urban green (cf. Gonzales-Inca 

et al., 2022). We present a semantic EO data cube approach for UGS mapping that allows 

ad-hoc browser-based urban green space mapping for any user-defined timespan or area 

using transferable semantic models. The presented Sentinel-2 semantic EO data cube for 

Austria makes use of all Sentinel-2 observations available since 2015. Examples are 

presented for the city of Vienna, but the approach is transferrable to anywhere in Austria 

using the same infrastructure, or any other similar semantic EO data cube worldwide. 

METHODOLOGY 

An EO data cube allows organising EO data in respect to direct access based on spatial-

temporal coordinates instead of file names, thus abstracting details of the storage system 

and aiming to make big EO data more accessible (Lewis et al., 2016). A semantic EO data 

cube or a semantics-enabled EO data cube is defined as ‘a data cube, where for each 

observation at least one nominal (i.e., categorical) interpretation is available and can be 

queried in the same instance’ (Augustin et al., 2019). We have implemented the first 

semantic EO data cube worldwide for all Sentinel-2 data available in Austria and provided it 

as Web application in a cloud-based environment (https://sen2cube.at, accessed on 28 

January 2022). Automatic semantic enrichment of every Sentinel-2 data set provides semi-

symbolic spectral categories for all observations as an initial interpretation of colour 

information on a big EO data scale. An interactive browser-based GUI allows users, to 

conduct analyses based on big EO imagery content using semantic querying without 

requiring programming or training samples (Sudmanns et al., 2021). 

To illustrate the usefulness of time series analysis for UGS mapping, we developed some 

initial semantic models that are transferable to any city in Austria and applicable to any 

timespan (e.g. months or seasons) covered by Sentinel-2 observations since the start of the 

mission in 2015 (Sentinel-2A) and 2017 (Sentinel-2B) until the present. Since the semantic 

layers derived from the satellite data use categorical data (e.g. different vegetation intensity 

categories, cloud / snow observations, bare soil categories), we are able to include all 

available observations in our analysis so that filtering image data based on overall cloud 

estimations available in the metadata is not necessary. Non-valid observations are masked 

out on a per pixel basis as defined in the semantic model, which increases the amount of 

valid-observations in cloud/snow rich seasons to also derive statistically valid amounts of 

data for these timespans. In addition, the number of available valid observations per 

selected timespan can be considered for assessing the reliability of results. The main 

advantage of this approach is that UGS can be derived interactively for specific application 

cases rather than always relying on an annual maximum extent, e.g. to derive green cover 

in urban heat related summer months where some areas are not green anymore or for winter 

months in respect to leave-off conditions.  
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RESULTS 

Figure 1 shows the results of our experiments using a semantic model that counts all pixels 

categorised as vegetation.  

 

Fig. 1. Mapping UGS in Vienna for different timespans in 2021 based on all Sentinel-2 data. The top row 

shows results for the entire year and the rows below show seasonal differences between June to August 

(middle) and January through March (bottom). The left column shows the percentage of valid observations 

(i.e. not cloud, haze or snow) that were categorised as (green) vegetation. The right column shows the 

absolute number of observations categorised as vegetation. 
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Due to the generic semantic enrichment of all Sentinel-2 images in the semantic EO data 

cube, we can not only select vegetation observations, but also mask out spectral categories 

that indicate non-valid observations like clouds, haze and snow. We focused on Vienna 

during the year 2021 as well as subsets of 2021, but the same semantic model can be used 

for different user-defined timespans or areas of interest. Figure 1 illustrates that there are 

differences in actively vegetated areas between summer and winter months, especially for 

deciduous forest in the western part of the city. While most of the green spaces identified 

for the entire year of 2021 show permanent vegetation during the summer months based on 

valid observations, we also observe fluctuating values in agricultural areas, such as in the 

north-eastern part of the city. Relying only on maximum green extents for UGS mapping can 

therefore overstate UGS, which can in turn influence further analysis, such as assessing 

urban heat vulnerability and developing mitigation strategies. Figure 2 shows how vegetation 

peaks can be mapped to monthly timeframes to show the dynamics of the green vegetation 

in UGS based on the dense Sentinel-2 image stack. 

 

Fig. 2. Monthly percentages of all available Sentinel-2 observations showing (green) vegetation displayed in 

R-G-B for March (red), June (green) and September (blue) during 2021. Distinct colors indicate vegetation 

peaks in specific months. Red colors indicate areas mainly vegetated in early spring, blue colors indidcate 

areas vegetated in late summer/autumn and green for vegetation dominating in June. Mixed colors indicate 

green vegetation present in multiple months, generally indicating a longer time span of green vegetation or 

even the whole year. 

CONCLUSIONS 

We see great potential in the semantic EO data cube approach to improve UGS identification 

based on dense image time series, especially for intra-annual assessments in near-real time 

towards temporally informed UGS that may open up new possibilities for investigation. This 

approach uses all Sentinel-2 observations and goes beyond existing approaches that rely 

on maximum extents. 
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