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Abstract 

To take advantage of the vast amount of remote sensing data, cloud computing platforms 

such as Google Earth Engine (GEE) open new possibilities to develop crop trait retrieval 

models applicable to any corner of the world. In the present study, we implemented hybrid 

models directly in GEE for processing Sentinel-2 (S2) top-of-atmosphere (TOA) reflectance 

data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy 

RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian processes 

regression (GPR) retrieval models were then established for 4 canopy-level crop traits 

namely: leaf area index, canopy chlorophyll content, canopy water content and canopy dry 

matter content. Successful reduction of the training dataset by 78% was achieved using the 

active learning technique Euclidean distance-based diversity (EBD). The EBD-GPR model 

showed moderate to good performance against in situ data over an independent study site 

(Grosseto, Italy). Obtained maps compared against ESA Sentinels' Application Platform 

(SNAP) vegetation estimates showed high consistency of both retrievals. Finally, local and 

national scale maps were successfully generated in GEE, with additionally providing 

uncertainties. In summary, the proposed retrieval workflow demonstrates the possibility of 

routine processing S2 TOA data into crop trait maps at any place on Earth as required for 

operational agricultural applications. 
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INTRODUCTION 

The unprecedented availability of optical satellite data in cloud-based computing platforms, 

such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval 

models from the local to the planetary scale. In particular, the optical data provided by 

Sentinel-2 (S2) constellation is very convenient for agricultural applications. GEE includes 

the S2 MSI collection, providing a powerful computational capability for mapping vegetation 

at any corner of the world. Hybrid retrieval models are of most interest to run on these 

platforms as they combine the advantages of physically-based radiative transfer models 

(RTM) with the flexibility of machine learning regression algorithms (MLRAs). Among the 

MLRAs, Gaussian Processes regression (GPR, Rasmussen and Williams (2006)) models 

excel with fast and excellent retrieval performance, and in addition they provide associated 

uncertainties of the mean predictions, to be used as quality indicators.  

Despite their diversity, the large majority of developed retrieval methods exploited bottom-

of-atmosphere (BOA) reflectance, i.e., after an atmospheric correction algorithm has been 

applied to acquired top-of-atmosphere (TOA) radiance or reflectance. To avoid the 

uncertainty that the atmospheric correction step may introduce an alternative approach is to 

upscale training data simulations from canopy to atmosphere levels and derive the 

vegetation variables directly from TOA data. TOA retrieval methods usually rely on the 

coupling of a vegetation RTM with an atmosphere RTM (Estévez et al., 2020, Estévez et al., 

2021, Estévez et al., 2022), with the latter explicitly modeling the atmospheric effects on the 

radiance received by the sensor. 

GEE provides powerful computational capability for planetary-scale data processing, 

however, GPR currently is not part of the GEE environment. Only recently, Pipia et al. (2021) 

developed a workflow that introduced GPR models in the GEE cloud platform. To make this 

integration possible it was necessary to review the standard GPR regression formulation to 

achieve a factorization suitable for parallel computing, and to implement the corresponding 

matrix algebra transformation. Secondly, active learning (AL) techniques (Verrelst et al. 

2016) were introduced to reduce the original training dataset without loss of information.  

With this ambition in mind, this study strives for facilitating operational processing of TOA-

scale developed GPR retrieval models by enabling implementation in the GEE framework. 

METHODOLOGY 

Our retrieval strategy firstly consisted of the development of hybrid models to estimate crop 

traits from S2 TOA data within the in-house developed Automated Radiative Transfer 

Models Operator (ARTMO) software environment (Verrelst et al. 2012). Second, retrieval 

models were integrated in GEE. 

The workflow with corresponding models is shown schematically in Fig. 1. The main steps 

are: (1) hybrid model development, (2) optimizing the training dataset, and (3) 

implementation in GEE. Also, additional steps were necessary to conduct the methodology: 

ground validation and comparison against SNAP estimates. 

For the development of the hybrid models for TOA data we generated a training database 
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with the models PROSPECT-4 (Feret et. al 2008) and 4SAIL (Verhoef and Bach, 2007) 

(PROSAIL). Subsequently, the atmospheric RTM 6SV (Vermote et al. 1997) was coupled 

with the PROSAIL simulated vegetation spectra to finally obtain TOA radiance data. 

 

Fig. 1. Flowchart of the pursued workow. Top: Generation of training dataset by coupling of leaf-canopy-

atmosphere RTMs for AL optimization and GPR algorithm training. Bottom: Integration of AL-optimized GPR 

models (EBD-GPR) in GEE for the retrieval of multiple crop traits from S2 TOA data. NV is for non-

vegetated. 

Furthermore, white Gaussian noise was injected to the simulated PROSAIL spectral data 

pool, in order to introduce more realism to the RTM data and to prevent overfitting of the 

models (Brede et al. 2020). Subsequently, 40 spectral samples from non-vegetated surfaces 

(e.g., water bodies, bare soil or man-made) were added to the training dataset. This step is 

essential to adapt the models towards processing of full heterogeneous scenes. 

Finally, a random dataset of 1'000 simulations of TOA reflectance data was obtained. Hence, 

the EBD method was applied to optimize the training database, obtaining individual reduced 

datasets for each variable, i.e., leaf area index (LAI) and upscaled leaf variables canopy 

chlorophyll content (laiCab), canopy water content (laiCw) and canopy dry matter content 

(laiCm). These datasets were used for training a GPR generating final retrieval models for 

each variable were established (EBD-GPR models). 

The Munich-North-Isar (MNI) campaigns in Southern Germany (N 48°, E 11°) were explored 

and directly involved in the AL procedure as a validation dataset. The dataset is composed 

of structural and biochemical crop variables, which were collected concurrently with field 

spectroscopic measurements on winter wheat (Triticum aestivum) and corn (Zea maize) 
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during the 2017 and 2018 growing seasons. 

The second dataset for independent validation of the AL-tuned models was collected during 

an extensive campaign conducted in central Italy (N 42°49.78', E 11°4.21') in the summer 

of 2018. The site is an agricultural area cultivated with corn and located North of the city of 

Grosseto. 

On the processing side, the Python Application Programming Interface (API) package ee 

provides functions in GEE that allow to extract any available information layer, e.g., S2 

Level-1C TOA reflectance (S2-L1C), over a specific area of interest (AOI) and process the 

resulting datasets very efficiently. 

The maps of the different functional vegetation traits were obtained by importing the 

corresponding EBD-GPR models generated in ARTMO in the GEE environment and 

performing the mean value prediction on-the-fly. As a result, the GPR mean value retrievals 

from a specific S2 tile can be visualized in a few seconds at any zoom level, and the 

maximum resolution map can be downloaded locally in a few minutes. The GEE codes to 

run the developed models and map the variables can be found in 

https://github.com/esjoal/GEE_GPR_mapping_vegetation 

RESULTS 

Successful reduction of the training dataset by 78% was achieved using the active learning 

technique Euclidean distance-based diversity (EBD). With the EBD-GPR model, highly 

accurate validation results of LAI and upscaled leaf variables were obtained against in situ 

field data from the validation study site Munich-North-Isar (MNI), with normalized root mean 

square errors (NRMSE) from 6% to 13%.  

Fig. 2 provides the independent validation results of the established retrieval models using 

the corn dataset from the Grosseto site, Italy. Overall retrieval accuracy can be seen as 

moderate with NRMSE > 20% (for laiCw and laiCab) to good with NRMSE < 20% (LAI and 

laiCm). 

 

Fig. 2. Ground validation of corn for retrieval of canopy-level crop traits over Grosseto site by the EBD-GPR 

models from S2-L1C (TOA) reflectance: LAI (a), laiCab (b), laiCw (c) and laiCm (d). Measured vs. estimated 

values along the 1:1-line. Horizontal bars indicate SD for ground measurements. Vertical bars indicate 

associated uncertainty estimates (1 SD) for EBD-GPR model. A trend line (red) was added to represent the 

pattern of the points. 

The maps were generated in GEE applying the EBD-GPR models for TOA data products 

over a subset from the MNI test site on 6th July 2017, as shown in Fig. 3. 

https://github.com/esjoal/GEE_GPR_mapping_vegetation
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The canopy-level models were compared against the same retrievals obtained by the SNAP 

Sentinel-2 Level 2 Prototype Processor (SL2P), providing high consistency of both retrievals 

(Fig. 4). 

 

Fig. 3. Maps (mean estimates; μ) of several crop traits: LAI (a), laiCab (b), laiCw (c) and laiCm (d), as 

generated by EBD-GPR models applied in GEE from S2-L1C data at MNI test site on 6th July 2017. 

 

Fig. 4. Crop traits maps as obtained by SNAP SL2P NN (Top), relative error maps (Center) and density 

scatter plots (Bottom) between EBD-GPR (Fig. 3) and SL2P NN, estimated from S2 Level-2A (BOA) data for 

LAI (a), laiCab (b) and laiCw (c) over MNI site on 6th July 2017. Relative errors and density in %. 

To demonstrate large scale mapping capabilities of GEE, we simulated the crop traits at the 
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national scale for the entirety of Germany (Fig. 5). In this case, we considered a time span 

instead of a specific date, and finally applied the statistical median estimator to obtain a 

spatially continuous coverage. At a glance, the maps show spatial patterns across the 

country surface and estimation range of variables seems to be correct. 

 

Fig. 5. Maps (mean estimates; μ) at big scale of several crop traits over the whole of Germany: LAI (a), 

laiCab (b), laiCw (c) and laiCm (d) , as generated by EBD-GPR models applied in GEE from S2-L1C data. 

Time span covers from 1st to 31st July 2017 using median value strategy. 

Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was 

applied over the entirety of Germany at 20m spatial resolution including information about 

prediction uncertainty (Fig. 6). The obtained maps provide confidence in the developed 

EBD-GPR retrieval models for integration into the GEE framework and national scale 

mapping from S2 L1C imagery. 

 

Fig. 6. Subset maps for four selected German regions with typical agricultural usage in 20 m spatial 

resolution (left maps). Uncertainty provided by the EBD-GPR models was used to mask out areas with more 

than 30 % of relative uncertainty (CV) (right maps). 
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CONCLUSIONS 

We can conclude that the workflow described here presents a promising path towards 

operational mapping of essential crop traits with the high-performance computing capacity 

of GEE and Sentinel-2 data. The proposed approach has the potential to be used for a 

multitude of agricultural applications supporting management decisions from farm to 

regional levels. 
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