## VYSOKÁ ŠKOLA BÁŇSKÁ – TECHNICKÁ UNIVERZITA OSTRAVA

#### Hornicko-geologická fakulta

Institut geoinformatiky

## ATMOSFÉRICKÉ A TOPOGRAFICKÉ KOREKCE DIGITÁLNÍHO OBRAZU ZE SYSTÉMU SPOT 5 V HORSKÝCH OBLASTECH

příspěvek studentské konference Gisáček 2010

Autor:

Vedoucí bakalářské práce:

**Ondřej Havel** 

Ing. Tomáš Peňáz, Ph.D.

OSTRAVA 2010

#### OBSAH

| 1. | ÚVOD                                                                       | . 3 |
|----|----------------------------------------------------------------------------|-----|
| 2. | KOREKCE OBRAZOVÉHO ZÁZNAMU 69-250                                          | . 3 |
| 3. | POROVNÁNÍ PŮVODNÍ A UPRAVENÉ SCÉNY                                         | . 6 |
|    | 3.1. Výběr oblastí pro sledování účinku provedených topografických korekcí | . 6 |
| 4. | ZÁVĚR A DISKUZE                                                            | 10  |

#### 1. ÚVOD

Obsahem tohoto textu jsou hlavní výstupy bakalářské práce Atmosférické a topografické korekce digitálního obrazu ze systému SPOT 5 v horských oblastech. Vzhledem k předem definovanému obsahu a rozsahu tohoto textu (cca 10 stran), nejsou zde uvedeny teoretické skutečnosti týkající se atmosférických a topografických korekcí, systému SPOT a modulu ATCOR. Následující kapitoly shrnují aplikování modulu ATCOR na předem vymezené území.

#### 2. KOREKCE OBRAZOVÉHO ZÁZNAMU 69-250

V této kapitole je popsán průběh korekcí pomocí modulu ATCOR 3 v softwaru Erdas Imagine 2010 na scéně 69-250.

Prvním krokem je vytvoření rastrů popisujících vlastnosti v terénu pomocí nástroje ATCOR Derive Terrain Files. Jedná se o rastr sklonu ("Slope File"), orientace svahů ("Aspect File"), a rastr "Sky View File" a "Shadow File". Vstupem je digitální model reliéfu ve formátu \*.img. Dalším krokem je spuštění nástroje ATCOR 3 Workstation. Následuje zadání vstupních parametrů na listu "Specifications" (Obrázek 1 - Nastavení vstupních parametrů, list "Specifications").

Obrázek 1 - Nastavení vstupních parametrů, list "Specifications"

V sekci "Files" zadáváme vstupní a výstupní obrazový záznam a datum skenování. Nastavením "Input Layers" označíme pásma, která budou korigována. Následují výběr druhu senzoru, v našem případě SPOT-5 MS, a kalibrační složky. Kalibrační složka je součastí softwaru a je unikátní pro každý typ a druh senzoru. V sekci "Geometry" zadáváme hodnoty úhlů. Jedná se o "Solar Zenith", "Solar Azimuth", "Senzor Tilt" a "Satellite Azimuth". Hodnoty těchto úhlů jsou součástí metadat k obrazovému záznamu (Příloha 5). Poslední specifikací je výběr rastrů vytvořených nástrojem *ATCOR3 Derive Terrain Files*.

Výpis ze souboru METADATA.dim:

<INCIDENCE\_ANGLE>29.286687</INCIDENCE\_ANGLE>
<VIEWING\_ANGLE>25.634193</VIEWING\_ANGLE>
<SUN\_AZIMUTH>167.973019</SUN\_AZIMUTH>
<SUN\_ELEVATION>55.537450</SUN\_ELEVATION>

Názvy úhlů v souboru METADATA.dim se liší od terminologie v softwaru Erdas Imagine. "Incidence Angle" označuje parametr "Senzor Tilt", a "Viewing Angle" označuje jako "Satellite Azimuth". U zbylých dvou úhlů jde pouze o záměnu slov "Solar" a "Sun". Výpočet úhlu "Solar Zenith" se řídí podle *Rovnice 1 - Výpočet úhlu "Solar Zenith"*, [9]. Solar \_ Zenith = 90° - Solar \_ Elevation Rovnice 1 - Výpočet úhlu "Solar Zenith", [9]

Na listu "Atmospheric Selections" (*Obrázek 2 – Nastavení vstupních parametrů, list* "*Atmospheric Selections*") zadáváme viditelnost v terénu a typ aerosolu. Způsob určení hodnoty těchto parametrů je popsán v kapitole **Chyba! Nenalezen zdroj odkazů.** 

| MATCOR3 For ERDAS IN         | AGINE 2010 Workstation Main Menu |                  |
|------------------------------|----------------------------------|------------------|
| Specifications Atmospheric S | elections                        | _                |
| Visibility                   |                                  | -                |
| Scene Visibility (km)        | 59.0 文 Estimate                  |                  |
| Aersoltype                   |                                  | Validate Spectra |
| Model for Solar Region       | rural                            | Run Correction   |
|                              | dry_rural 😵                      |                  |
| Model for Thermal Region     |                                  | Value Adding     |
| 1-                           |                                  | Cancel           |
|                              |                                  |                  |
|                              |                                  |                  |
|                              |                                  |                  |
|                              |                                  |                  |

Obrázek 2 – Nastavení vstupních parametrů, list "Atmospheric Selections"

V případě scény 69-250 jsem pro určení viditelnosti v terénu použil funkci odhadu viditelnosti v oblasti červeného spektrálního pásma.

Po kliknutí na tlačítko "Run Correction" vstoupíme do okna "Constant Atmosphere Module". Během kliknutí software počítá mapu osvětlení ("Ilumination Map") s lokálními úhly osvětlení ( $\beta_i$ ) pro každý pixel. Před provedením korekcí jsem se nezabýval odstraněním oparu. Následuje specifikace parametrů u BRDF korekce. Nastavením parametrů  $\beta_T$  a *g* se věnuje kapitola **Chyba! Nenalezen zdroj odkazů.** Použil jsem empirickou BRDF korekci obrazu podle funkce (*Rovnice 2 - BRDF funkce*):

> $G = \cos(i) / \cos(t)$ Rovnice 2 - BRDF funkce

,kde je *i=incidenční úhel* ( $\beta_i$ ), a *t=prahový úhel* ( $\beta_t$ , "*Threshold Angle"*).

#### 3. POROVNÁNÍ PŮVODNÍ A UPRAVENÉ SCÉNY

Tato kapitola se zabývá srovnáním DN hodnot původního a upraveného obrazového záznamu. Pro doložení přínosu provedených korekcí byly vybrány oblasti, ve kterých byla sledována změna hodnot původního a korigovaného záznamu. Postup je popsán v následujících kapitolách.

# 3.1. Výběr oblastí pro sledování účinku provedených topografických korekcí

Oblastí ke sledování účinku korekcí rozumíme dvojici polygonů vybranou podle následujících vlastností. První vlastností je v nejlepším případě procentuálně stejné složení dřevin a věkové rozložení v dané dvojici polygonů (Tabulka 2). Jelikož je jedním z cílů této práce potlačení vlivu topografie na odrazivost terénu, tj. osvětlená a stinná strana svahu, druhou vlastností je orientace svahů v polygonech ke Slunci. Na obrázku 4 jsou vyobrazeny jednotlivé polygony nad DMR. Výběr byl proveden tak aby jeden polygon byl osvětlený, druhý stinný. Azimut dopadajícího slunečního záření v době pořízení scény byl 167,973019°.

Pro každou oblast byly vytvořeny polygonové vrstvy ve formátu SHP reprezentující dva výše zmíněné polygony. Pojmenování je následovné: první oblast – maska\_1\_1.shp a maska\_1\_2.shp, druhá oblast – maska\_2\_1.shp, maska\_2\_2.shp, třetí oblast – maska\_3\_1.shp a maska\_3\_2.shp.



Obrázek 3 – Oblasti pro sledování korekcí, Žlutě: Oblast 1 (maska\_1\_1, maska\_1\_2), Modře:Oblast 2 (maska\_2\_1, maska\_2\_2), Zeleně: Oblast 3 (maska\_3\_1, maska\_3\_2)

| Oblast   | Polygon   | Zastoupení [%] Stáří [rok]                                 |    |
|----------|-----------|------------------------------------------------------------|----|
| Oblast 1 | Maska_1_1 | buk lesní – 80<br>dub letní – 15 68<br>modřín evropský – 5 |    |
|          | Maska_1_2 | buk lesní – 96<br>modřín evropský – 3<br>olše lepkavá – 1  | 50 |
| Oblast 2 | Maska_2_1 | buk lesní – 99<br>smrk ztepilý – 1                         | 55 |

Tabulka 1 – Tabulka procentuálního zastoupení a stáří dřevin

|          | Maska_2_2 | buk lesní – 95<br>modřín evropský – 5               | 53  |
|----------|-----------|-----------------------------------------------------|-----|
| Oblast 3 | Maska_3_1 | buk lesní – 100                                     | 171 |
|          | Maska_3_2 | buk lesní – 95<br>habr obecný – 3<br>javor mléč – 2 | 165 |

Hodnota reprezentující stáří je pro zastoupené druhy společná.

Na následujícím obrázku jsou zobrazeny oblasti nad digitálním modelem reliéfu.



*Obrázek 4 - Oblasti pro sledování korekcí zobrazená nad DMR, Žlutě: Oblast 1, Modře: Oblast 2, Zeleně: Oblast 3*  Pomocí nástroje *Extract by Mask* v softwaru ArcGIS jsem vytvořil extrakt hodnot buněk nacházející se uvnitř dané masky, a to zvlášť pro obrazový záznam před a po korekci. Extrakt hodnot byl proveden pro každé pásmo zvlášť. K porovnání jsem použil nástroj *Get Raster Properties*. Výstupem byla průměrná hodnota vstupního rastru. Tyto průměrné hodnoty byly z důvodu přehlednosti zaokrouhleny na dvě desetinná místa.

Přehled hodnot se nachází v následující kapitole v *Tabulka 2 – Tabulka ø DN hodnot vstupních* a výstupních rastrů.

## 4. ZÁVĚR A DISKUZE

|                       |       | Obrazový záznam     |                      |  |  |
|-----------------------|-------|---------------------|----------------------|--|--|
| Object                | Pásmo | Spot5_69_250_CZ_020 | Spot5_69_250_CZ_0205 |  |  |
| Oblast                |       | 52007               | 2007 po korekci      |  |  |
|                       |       | ø DN                | ø DN                 |  |  |
| maska 1 1             | 1     | 213,1               | 87,6                 |  |  |
| Osvětlený             | 2     | 16,2                | 0,0                  |  |  |
| nolvgon               | 3     | 48,9                | 64,9                 |  |  |
| polygon               | 4     | 100,4               | 75,6                 |  |  |
| marka 1 2             | 1     | 161,9               | 75,5                 |  |  |
| Stinný                | 2     | 8,2                 | 0                    |  |  |
| nolvgon               | 3     | 30,6                | 48,1                 |  |  |
| polygon               | 4     | 86,1                | 82,2                 |  |  |
| marka 2 1             | 1     | 172,9               | 80,3                 |  |  |
| IIIdSKd_2_1<br>Stinný | 2     | 9,2                 | 0,0                  |  |  |
| nolvgon               | 3     | 33,2                | 51,2                 |  |  |
| polygon               | 4     | 89,8                | 83,1                 |  |  |
| maska 2 2             | 1     | 198,1               | 83,3                 |  |  |
| Osvětlený             | 2     | 12,7                | 0                    |  |  |
| nolvgon               | 3     | 40,4                | 54,7                 |  |  |
| pei/8011              | 4     | 97,6                | 76,5                 |  |  |
| marka 2 1             | 1     | 114                 | 48,4                 |  |  |
| IIIdSKa_5_1<br>Stinný | 2     | 7,2                 | 0,1                  |  |  |
| nolvgon               | 3     | 24,5                | 38,9                 |  |  |
| polygon               | 4     | 74,8                | 71,8                 |  |  |
| maska 2 2             | 1     | 155,1               | 54,3                 |  |  |
| Novětlený             | 2     | 16,8                | 0,5                  |  |  |
| polvgon               | 3     | 42,6                | 53,1                 |  |  |
| Poi12011              | 4     | 88,8                | 63,2                 |  |  |

Tabulka 2 – Tabulka ø DN hodnot vstupních a výstupních rastrů

Numerický model ATCOR mění hodnoty ve všech čtyřech spektrálních pásmech. Intervaly vlnových délek pásem 1 – 4 jsou obsaženy v kapitole 6. Pásmo 1 je nositelem informace s oblasti zelené části viditelného záření EMG spektra. Pásmo 2 nese informaci s červené oblasti viditelného záření. Pásmo 3 je v intervalu blízkého infračerveného záření a pásmo 4 je v intervalu středního infračerveného záření.

První pásmo (0,50 – 0,59µm) se nachází v oblasti pigmentační absorpce [4]. Ve vlnové délce 0,54 µm se nachází lokální maximum odrazivosti. Jedná se o oblast zelené barvy. Ve druhém pásmu (0,61 – 0,68µm) mají nejvyšší hodnoty oblasti bez vegetačního pokryvu. Senzor pro tento interval spektra je citlivý na červenou část viditelného spektra. Třetí pásmo (0,78 – 0,89µm) se nachází v oblasti vysoké odrazivosti neboli buněčné struktury [4]. Vysokou odrazivost v této části spektra způsobuje několikanásobný odraz uvnitř listu, který je ovlivněn jeho morfologickou strukturou. Obrazové materiály pořízené v této oblasti spektra mají největší možnosti pro odlišení jednotlivých druhů rostlin. Pro naměřené hodnoty je typická vysoká variabilita. Interval elektromagnetického záření čtvrtého pásma (1,58 – 1,75µm) se nachází v oblasti středního infračerveného záření. Obraz v tomto pásmu má nižší prostorové rozlišení (20x20metrů).

Jelikož se oblast scény 69-250 nachází na území hustě porostlém zelení lze tedy předpokládat, že nejvýznamnější změny DN hodnot původního oproti korigovanému záznamu budou v oblasti citlivé na viditelné záření zelené barvy, tedy v prvním pásmu. Tuto hypotézu potvrzuje tabulka hodnot (*Tabulka 3 - Tabulka rozdílu ø DN hodnot prvního pásma u původního a korigovaného obrazu*).

|        |      | (1)       | (2)        | (3)       | (4)       |
|--------|------|-----------|------------|-----------|-----------|
|        |      | Spot5_69_ | Rozdíl DN  | 69_250_CZ | Rozdíl DN |
|        |      | 250_CZ_02 | hodnot     | _atcor    | hodnot    |
| Oblast | ásmo | 052007    |            |           |           |
|        | ď    |           | (osvětlený |           | osvětlený |
|        |      | ø DN      | minus      | ø DN      | minus     |
|        |      |           | stinný)    |           | stinný)   |

Tabulka 3 - Tabulka rozdílu ø DN hodnot prvního pásma u původního a korigovaného obrazu

| maska_1_1<br>Osvětlený<br>polygon | 1 | 213,1 | 51,17 | 87,6 | 12,1 |
|-----------------------------------|---|-------|-------|------|------|
| maska_1_2<br>Stinný polygon       | 1 | 161,9 |       | 75,5 |      |
| maska_2_1<br>Stinný polygon       | 1 | 172,9 | 25,1  | 80,3 | 3    |
| maska_2_2<br>Osvětlený<br>polygon | 1 | 198,1 |       | 83,3 |      |
| maska_3_1<br>Stinný polygon       | 1 | 114   |       | 48,4 |      |
| maska_3_2<br>Osvětlený<br>polygon | 1 | 155,1 | 41,1  | 54,3 | 0,0  |

V této tabulce ve sloupci 1 lze pozorovat výrazně vyšší DN hodnoty naměřené v prvním spektrálním pásmu u osvětlených polygonů oproti DN hodnotám nižším u polygonů stinných. Sloupec 2 obsahuje rozdíl DN hodnot osvětleného a stinného polygonu. Sloupec 3 obsahuje DN hodnoty korigovaného obrazu. Sloupec 4 obsahuje rozdíl DN hodnot osvětleného a stinného polygonu korigovaného obrazu. Na první pohled je zřejmé, že rozdíly DN hodnot u korigovaného obrazu jsou výrazně nižší než rozdíly DN hodnot obrazu původního.

Na základě tohoto faktu lze tedy konstatovat, že korekcí obrazu došlo ke "sblížení" průměrných DN hodnot u osvětlených a stinných svahů.

Při vizuálním posouzení původní a korigované scény 69-250 (Přílohy 1 a 2), a jejího podobrazu (Přílohy 3 a 4) podložené závěrem z interpretace tabulky hodnot (*Tabulka 3 - Tabulka rozdílu ø DN hodnot prvního pásma u původního a korigovaného obrazu*) lze říci, že použití atmosférických a topografických korekcí prostřednictvím modulu ATCOR mělo pozitivní vliv a přiblížilo naměřené DN hodnoty skutečným odrazivým a zářivým vlastnostem povrchu.

#### LITERATURA

- [1] ARCDATA PRAHA. Systém SPOT [on-line]. Dostupné z WWW: <u>http://www.arcdata.cz/produkty-a-sluzby/geograficka-data/druzicova-data/druzice-a-skenery/spot+/</u>
- [2] ARCDATA PRAHA Archiv. Systém SPOT [on-line]. Dostupné z WWW: http://old.arcdata.cz/data/druzicova/spot
- [3] CNES. Systém SPOT [on-line]. Dostupné z WWW: <u>http://www.cnes.fr/web/CNES-en/1415-spot.php</u>
- [4] DOBROVOLNÝ, Petr. Dálkový průzkum Země. Digitální zpracování obrazu. 1.
   vyd.,Brno: Masarykova univerzita. Přírodovědecká fakulta. Katedra geografie, 1998.
   208 s. ISBN 80-210-1812-7.
- [5] GISAT [on-line]. Dostupné z WWW: http://www.gisat.cz/content/cz/dpz/prehled-druzicovych-systemu/spot
- [6] KOLÁŘ, J. Dálkový průzkum Země. 1. vyd., Praha: SNTL, 1990. 170 s.
- [7] LILLESAND, T. M. KIEFER, R., W. CHIPMAN, J., W. Remote Sensing and Image Interpretation. 5th edition, New York: John Wiley & Sons, 2004. 763 s. ISBN 0-471-15227-7.
- [8] RICHTER R.: ATCOR: Atmospheric and Topographic Correction [on-line]. Dostupné z WWW: <u>http://www.dlr.de/caf/Portaldata/36/Resources/dokumente/technologie/atcor\_flyer\_ma</u> <u>rch2004.pdf</u>
- [9] RICHTER R.: ATCOR-2/3 User Guide, Version 6.1, January 2005
- [10] RICHTER R.: ATCOR-2/3 User Guide, Version 7.1, January 2010
- [11] Web SPOT 5 [on-line]. Dostupné z WWW: <u>http://spot5.cnes.fr/gb/index3.htm</u>

### SEZNAM OBRÁZKŮ

| Obrázek 1 - Nastavení vstupních parametrů, list "Specifications"                                                                                                     | 4 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Obrázek 2 – Nastavení vstupních parametrů, list "Atmospheric Selections"                                                                                             | 5 |
| Obrázek 3 – Oblasti pro sledování korekcí, Žlutě: Oblast 1 (maska_1_1, maska_1_2),<br>Modře:Oblast 2 (maska_2_1, maska_2_2), Zeleně: Oblast 3 (maska_3_1, maska_3_2) | 7 |
| Obrázek 4 - Oblasti pro sledování korekcí zobrazená nad DMR, Žlutě: Oblast 1, Modře:<br>Oblast 2, Zeleně: Oblast 3                                                   | 8 |

#### SEZNAM TABULEK

| Tabulka 1 – Tabulka procentuálního zastoupení a stáří dřevin7                           |
|-----------------------------------------------------------------------------------------|
| Tabulka 2 – Tabulka ø DN hodnot vstupních a výstupních rastrů10                         |
| Tabulka 3 - Tabulka rozdílu ø DN hodnot prvního pásma u původního a korigovaného obrazu |
|                                                                                         |