A Web-Enabled Extension of a Spatio-Temporal DBMS

Markus Innerebner

Michael Bodhlen

Igor Timko

Free University of Bozen-Bolzano, Italy
{innerebner, boehlen, timko}@inf.unibz.it

ABSTRACT

Many database applications deal with spatio-temporal phenomena,
and during the last decade a lot of research targeted location-based
services, moving objects, traffic jam preventions, meteorology, etc.
In strong contrast, there exist only very few proposals for an im-
plementation of a spatio-temporal database system let alone a web-
based spatio-temporal information system.

This paper describes the design and implementation of a web-
based spatio-temporal information system. The system uses Sec-
ondo as spatio-temporal DBMS for handling moving objects and
MapServer as an OGC-compliant rendering engine for static spa-
tial data. We describe the architecture of the system and compare
our system with a standalone application. The paper investigates in
detail issues that arise in the context of the web. First, we describe
an implementation of a lightweight client that takes advantage of
the functionality offered by Secondo and MapServer. Second, we
describe how moving objects can be represented in GML. We dis-
cuss possible GML representations, propose an extension of GML
that uses 3D segments (2D location + time) to represent moving
objects, and present experiments that compare the solutions.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
Spatio-temporal Web Applications, GML, OGC

1. INTRODUCTION

During the last decade spatio-temporal phenomena have become
an important research area. Many real world applications, includ-
ing location-based services, traffic jam prevention, and weather
forecasts, focus on moving objects. For example location-based
services target moving physical persons and strive to provide them
with information according to their interests and current location.
In the area of traffic jam detection and prevention trajectories of
moving vehicles are collected to identify traffic jam areas. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACMGIS ’07, November 7-9, 2007, Seattle, WA

Copyright 2007 ACM ISBN 978-1-59593-914-2/07/11 ...$5.00.

weather forecasts data of moving weather fronts has to be inves-
tigated to come up with accurate forecasts for the future.

Despite the ubiquity of spatio-temporal phenomena, there exist
only few complete spatio-temporal DBMSs (STDBMSs) offering
spatio-temporal data types and operators. All of them use pro-
prietary representations of moving objects, which hampers their
deployment in web-based information systems. We describe the
design and implementation of a web-based spatio-temporal infor-
mation system that takes advantage of the functionality of existing
systems. It uses Secondo, a spatio-temporal DBMS, for handling
moving objects and MapServer, an OGC-compliant rendering en-
gine, for handling static spatial data.

The technical contributions of the paper are as follows:

e We propose a modular system architecture that can be used
in combination with web applications. Specifically, we de-
scribe a service oriented extension of Secondo with standard
services to store, transport and process spatio-temporal infor-
mation. A web user or service can combine, use and manage
these services to work with spatial and spatio-temporal infor-
mation (moving points).

e We describe a web interface that is implemented as a light-
weight client. The rendering of spatial layers is delegated to
the server-side rendering engine and only moving points are
rendered on the client.

e We show how moving points can be represented with the dy-
namic features of GML. First, we discuss a GML representa-
tion where moving objects are modeled as ordered sequences
of snapshots. Second, we extend GML to moving points us-
ing the approach from Lema et al. [19]. The trajectory of a
moving point is decomposed into units where each unit rep-
resents a 3D segment (2D location + time).

e We present empirical results that demonstrate that for mov-
ing objects with frequent gaps in their definition time (i.e., a
gap after every or every second segment) the new represen-
tation is more suitable, whereas for moving objects with rare
gaps (i.e., with more than two segments after one gap) the
representation with multiple ordered sequences of snapshots
performs well.

The rest of the paper is organized as follows. Section 2 de-
scribes spatio-temporal systems, geographical rendering engines,
standards in the spatial area and other related work in this area.
In Section 3 we explain how moving points can be represented in
GML. Section 4 describes the architecture of our system and ex-
plains how spatio-temporal queries are processed. Section 5 com-
pares two GML moving point representations. Section 6 concludes
the paper and points to future research directions.

2. RELATED WORK

Only very few database systems exist that support moving ob-
jects. DOMINO [29] is a layer built on top of a DBMS to support
moving object databases. It uses ArcView as an application server
to handle spatial data and ArcIMS as a rendering engine. Spatio-
temporal data is stored in Informix. DOMINO focuses on present
and future trajectory data. CONCERT, Secondo and DEDALE
are representatives of extensible systems [3] that offer support for
application-specific modules. CONCERT [24] provides flexible in-
dex support and its abstract object storage types allow to implement
spatio-temporal data types. The main contribution of DEDALE
[11], another spatio-temporal system, is the handling of interpo-
lated data. Secondo [14] features user-defined algebras, and it pro-
vides a powerful spatio-temporal algebra that supports moving ob-
jects. A stand-alone client application contains several viewers to
visualize the various data types. The most relevant viewer can visu-
alize spatial and spatio-temporal objects. Queries are formulated as
text strings (SQL or an algebraic format, Second Order Signature)
and the result is sent back as a nested list, a very compact format to
describe structural data. The client parses the result and produces
graphical objects that use and extend the Swing library of Java.

The Open Geospatial Consortium (OGC) is an organization that
provides standards for geo-spatial data and location-based services.
Many GIS systems nowadays follow the OGC standards [7]. OGC
proposed a vendor-neutral Geographic Markup Language (GML)
[8], a XML-based encoding for modeling, storing, and transport-
ing geographic information. GML includes spatial and non-spatial
properties of geographic features. A feature is a tuple with alphanu-
meric attributes associated with a geometry (point, line, polygon,
etc.)

An OGC compliant system has to provide operations to retrieve
geographic features in form of a service oriented architecture. This
means the system has to offer services to operate with spatial data.
These services are accessible over the HTTP protocol or via method
invocation.

Two different services must be developed to deal with geographic
information. First, to request a graphical visualization of geographic
data (map), an OGC compliant system must provide a specific ser-
vice, called WMS (Web Map Service) [1], with the following func-
tionality: list what kind of maps are deliverable (GetCapabilities)
and produce a map of a specified layer (GetMap). Second, to query,
insert, delete, or update geographic features, an OGC compliant
system must offer a service called WFS (Web Feature Service) [32].
This service defines interfaces for data access and manipulation on
geographic features, using HTTP as the distributed computing plat-
form. Via these interfaces, a web service can combine, use and
manage geodata from different sources. The service must have the
following functionality: list all queryable layers, the available op-
erations to be invoked (query, insert, update, delete, etc.), and the
predicates to be applied (GetCapabilities). It must be possible to
request features and receive as result a valid XML document that
contains the content (GetFeature). In such a feature element, spatial
properties are expressed with GML. When requesting geographic
maps or features, we usually want as result a subset of the database
objects. OGC provides a XML encoding for filtered expressions,
called Filter Encoding Implementation Specification (FEIS) [31].
It provides a set of logical, comparison, spatial, and some temporal
operators and predicates.

For the spatio-temporal domain, OGC provides limited support
in terms of dynamic features. Specifically, a moving point can be
modeled with the dynamic features TimeSlice and MovingObject-
Status. Both of them represent a moving point as a sequence of its
states (snapshots at specific time instants). The TimeSlice represen-

tation is described in detail in Section 3. Currently FEIS does not
provide spatio-temporal operators or filters with dynamic features.

The increase of Web-GIS application during the last five years
has fueled the development of rendering engines that produce maps.
The most well-known systems are ArcIMS [9], MapServer [30] and
GeoServer [5]. The main task of a rendering engine is to facilitate
the cooperation between geographic sources (stored in DBMS or in
shape files) and the application (in our case the web client) [4, 30].
MapServer as well as GeoServer are capable to interpret GML.
They can be configured to be accessible via the WMS and WFS
services. Common Web-GIS client implementations are MapBen-
der and MapBuilder. The latter is a powerful, standards compliant
client that is written in Java Script. MapBuilder visualizes a map
either by fetching images with WMS requests or by rendering im-
ages on the client. The client can only render basic geometry types
of GML (point, line, polygon). For moving objects, no rendering
exists.

During the last years significant research efforts have focused on
proposing advanced techniques for handling moving objects (e.g.,
indexing of moving objects [18,21-23], continuous nearest neigh-
bor queries for moving objects [2, 16, 17], aggregation of moving
objects [21,27,28]). These results focused on selected aspect and
were not presented in the context of a working system.

As for modeling moving objects, Giiting et al. [13, 19] propose
to model and query moving points as a sequence of units. Each
unit represents the movement of a point along a straight line. This
approach is implemented in Secondo. In this paper, we propose a
GML representation of moving objects based on the Giiting’s ap-
proach. An extension of the Giiting’s approach to network-constrained
objects is presented in [15]. Speicys et al. [26] propose another data
model for network-constrained objects that supports NN queries.
Sistla et al. [25] describe a model based on dynamic attributes that
supports queries about current and near future positions of moving
objects. This approach is implemented in DOMINO. Grumbach et
al. [12] present a constraint-based model for moving objects. This
model is implemented in DEDALE.

3. MOVING POINTS IN GML

Results of queries about moving objects may contain a lot of
data. This data must be sent from the server to the client for visu-
alization. For an efficient rendering, we propose to send this data
in one block (i.e., in one GML file). This raises the issue of model-
ing moving objects in GML. In this section, we propose two GML
representations of moving points (moving point objects).

For illustrating the representations, we use the example moving
point from Figure 1. The object is the city bus number 10A of
Bozen-Bolzano, Italy. On June 1, 2007, at 10:00:00 AM, the bus
is at position with coordinates (680206.67, 5151256.16). Between
10:00:00 AM and 10:01:33 AM, the bus moves linearly to position
(680286.01, 5151314.74). Then, the bus makes a turn and again
moves linearly until it reaches position (680362.90, 5151363.56),
and so on. Thus, we have a linear approximation of the bus’s move-
ment. The bus’s positions are specified in the UTM coordinate ref-
erence system.

The first representation, termed the GML TimeSlice representa-
tion, is an existing representation [8]. It is based on the idea that
a moving point is a sequence of its states. A state is a pair of time
and position and is expressed with the TimeSlice element. Hence, a
moving point is captured by a sequence of TimeSlice elements. In
order to capture discontinuities in movements (i.e., gaps in defini-
tion time of the moving point, which is common in query results),
each sequence of TimeSlice elements that captures one continuous
”piece” of movement is put into one history element.

46

2007-06-01T10:02.13¢ (680362.90 5151363.56)

(680286.01 5151314.74)

2007-06-01T10:01.33
APPSO WOV VAV VNV VAV VY

2007-06-01T10:00 ¢ (680206.67 5151256.16)

Figure 1: Moving Point: Bus Number 10A in Bozen-Bolzano

Example 3.1 illustrates a GML document that represents the mov-
ing point from Figure 1 in the GML TimeSlice format. The move-
ment of the bus between positions (680206.67, 5151256.16) and
(680286.01, 5151314.74) is represented as two TimeSlice elements,
one between lines 7 and 18 and the other one between lines 19 and
30. Because the movement of the bus is continuous, i.e., without
gaps in the definition time, the document contains only one his-
tory element, between lines 6 and 44. The corresponding states
in Example 3.1 and in Figure 1 are indicated by the same style of
underlining (e.g., the first state is underlined by a single line).

EXAMPLE 3.1. GML TimeSlice Representation

<?xml version="1.0" encoding="UTF—8"?>
<bz10m:Buses xmlns="http://www.opengis.net/gml" xmlns:bz10m="http: //
www.inf.unibz.it/dis/bzl10m">
<bzlOm:id>1</bz10m:id>
<bzlOm:busLine>LinealOa </bz10m:busLine>
<bzlOm:trip gml:id="93fd2ebb— lcd6—457f—8fb9—45b634¢0¢907">
<history >
<TimeSlice gml:id="0282cb38—8350—45fb—94bd —61dd3cf80de3">
<validTime >
<Timelnstant>
<timePosition >2007—06—01T10:00</timePosition >
</Timelnstant>
</validTime >
<location>
<Point srsName="urn:EPSG:geographicCRS:4258">
<pos>680206.67 5151256.16 </pos>
</Point>
</location >
</TimeSlice >
<TimeSlice id="4a231b33—11ee—4110—9f5f—9dc8675f5f1b">
<validTime >
<Timelnstant>
<timePosition >W/linmPoailion>
</Timelnstant>
</validTime >
<location >
<Point srsName="urn:EPSG:geographicCRS:4258">
<Pos2680286.01 I13I314.74 </pos>
</Point>
</location >
</TimeSlice >
<TimeSlice id="4a231b33—11ee—4110—9f5f—9dc8675f6f16">
<validTime >
<Timelnstant>
<timePosition >2007—06—01T10:02.13</timePosition >
</Timelnstant>
</validTime >
<location>
<Point srsName="urn:EPSG:geographicCRS:4258">
<p0os>680362.90 5151363.56 </pos>
</Point>
</location>
</TimeSlice>
<!— other TimeSlice elements ——>
</history >
</bzl10m:trip >
</bz10m:Buses>

In Secondo, a moving point is represented as a sequence of units.
A unit is a pair of states, which represents movement between the

o -

Socououmew

11
12
13
14
15
16
17
18
19

20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38

two states (see [19] for details). Thus, the GML TimeSlice rep-
resentation and Secondo’s representation of moving points do not
match. For this reason, it is necessary to convert query results
from Secondo’s representation to the GML TimeSlice representa-
tion. This conversion must take into account that moving points are
allowed to have gaps in their definition time. In the Secondo rep-
resentation, gaps are modeled implicitly, by not having a unit for
the corresponding time interval. In contrast, in the GML TimeS-
lice representation, gaps are modeled explicitly by having a history
element for each period of continuous movement. In case of a tra-
jectory with a large number of gaps this will increase the size of
the document. During the conversion to TimeSlice elements gaps
need to be identified: this is done for each unit with a verification
whether the time of its end state is equal to the time of the start state
of the next unit.

In order to directly support Secondo’s mpoint type, we propose
a new GML representation, termed GML MovingObjectUnit rep-
resentation, that maps each Secondo unit into one GML element.
This simplifies the conversion between Secondo’s representation
and GML. For the GML MovingObjectUnit representation, we reuse
existing GML elements along with two new elements: (1) Movin-
gObjectUnit that represents a unit and (2) units that represents a
sequence of moving object units. In this representation, discon-
tinuities in movements are represented by having no moving ob-
ject units for the time periods when moving points are not de-
fined. Thus, a complete moving point is captured by one units
element. Since a moving object unit models the movement from
one point to another point, we restrict the occurrences of points in
the LineString type to exactly two position elements.

Example 3.2 presents a GML document that represents the mov-
ing point from Figure 1 in the GML MovingObjectUnit represen-
tation. The movement of the bus between positions (680206.67,
5151256.16) and (680286.01, 5151314.74) is represented as the
MovingObjectUnit element between lines 7 and 22. The complete
movement of the bus is captured by one units element, between
lines 6 and 40. The corresponding states in Example 3.2, Exam-
ple 3.1, and in Figure 1 are indicated by the same style of underlin-
ing (e.g., the very first state is underlined by a single line).

EXAMPLE 3.2. GML MovingObjectUnit Representation

<?xml version="1.0" encoding="UTF—8"?>
<bz10m:Buses xmlns="htip:// www.opengis.net/gml" xmlns:bz10m="htip: //
www.inf.unibz.it/dis/bzl0m">
<bz10m:id>1</bz10m:id>
<bzlOm:busLine>LinealOa </bz10m:busLine >
<bzlOm:trip id="c33clbfl —7730—4757—8f61—56c347f776af">
<units >
<MovingObjectUnit>
<validTime >
<TimePeriod>
<beginPosition >2007—06—01T10:00</beginPosition >

<endPosition W</endPosiuou >

</TimePeriod>
<includeBegin>true </includeBegin >
<includeEnd>false </includeEnd >
</validTime >
<location>
<LineString srsName="urn:EPSG:geographicCRS:4258">
<pos>680206.67 5151256.16 </pos>
<0s20680286.01 IS4 </pos>
</LineString >
</location>
</MovingObjectUnit >
<MovingObjectUnit >
<validTime >
<TimePeriod>
<beginPosition >2007—06—01T10:01.33</beginPosition >

<endPosition >2007—06—01T10:02.13</endPosition >
</TimePeriod>

<includeBegin>true </includeBegin >
<includeEnd>false </includeEnd >

</validTime >

<location>

<LineString srsName="urn:EPSG:geographicCRS:4258">
<0s2080286.01 I13I31474 </pos>
<p0s>680362.90 5151363.56 </pos>

</LineString >

</location>

</MovingObjectUnit>

39
40
41

<!— other MovingObjectUnit clements. Even in case of gaps —->
</units >

</bzl0m:trip >

</bz10m:Buses>

Cox et al. [8] propose another GML representation of moving points,
which we term the GML MovingObjectStatus representation. This
representation, like the GML TimeSlice representation, represents
amoving point as a sequence of its states. Since the two representa-
tions are similar we do not consider the GML MovingObjectStatus
representation in this paper.

Section 5 presents the experimental comparison between the GML
TimeSlice and GML MovingObjectUnit representation.

4. SYSTEM ARCHITECTURE AND IMPLE-
MENTATION

Our goal is to implement a web-based spatio-temporal informa-
tion system with a lightweight client. Our strategy is to select a
spatio-temporal database system, which implements a considerable
amount of spatio-temporal functionality, and to integrate it with a
web-based, lightweight client. For the implementation (data ex-
change format and the available service methods), we conform to
the OGC standards as much as possible. In this section, we present
the architecture of our system.

4.1 Architecture

Figure 2 illustrates the architecture of our system. The three
system components are (from left to right) Spatio-Temporal (ST)
Server, the Light Graphical User Interface (Light-GUI), and the
rendering engine. The general interaction between the components
is as follows: after having received the user query, the Light-GUI
decomposes the query into two components: spatio-temporal (i.e.,
moving points) and spatial (i.e., a background map). It sends the
spatio-temporal and spatial component to the ST Server and the
rendering engine, respectively. It receives responses and visualizes
the query result. In the following, we discuss each system compo-
nent in detail.

The ST Server provides the Light-GUI with the spatial and spatio-
temporal data and meta data (i.e., features of spatial and spatio-
temporal layers). The ST Server uses Secondo as a DBMS, because
it provides many data types and operators related to moving objects
and, in particular, to moving points [19].

To offer an OGC compliant system we have to provide WES ser-
vices to query spatio-temporal data and we have to represent the the
result in GML format. Secondo accepts SQL queries and returns
the results in the nested list format. Hence a Converter converts
WES requests into SQL expressions and transforms the nested list
into GML. For this Secondo’s date format needs to be converted
into the corresponding date format pattern provided from XML-
schema and each moving point needs to specify what coordinate
reference system is used. In addition, we handle repeating data
intelligently, which helps to reduce the GML document size con-
siderably. Specifically, we employ reification [33]. This means that
we assign a unique ID to each distinct location mentioned in the
nested list. Thanks to this, the resulting XML document contains
the full specification (i.e., XML element) for each distinct location
only once. For each repetition of the distinct location, the document
contains the XLink attribute that points to the full specification. As
usual after the conversion to XML, the size of the data increases
considerably. We follow the standard approach and let the web
server compress XML documents, which yields high compression
rate [10].

The Light-GUI is implemented in a web browser. We do not
simply migrate Secondo’s GUI, written as a Java standalone pro-

gram, into a Java applet, but create our user interface from scratch
using an existing web mapping client framework. There are several
reasons for this decision. First, we want to offer a web-based appli-
cation that runs within web browsers without additional extension
(i.e., JRE need to be installed to make Java applets running in a
browser). Second, we want of offer a lightweight client that does
not have to take care of the memory expensive rendering process of
spatial data. Finally, we want to provide the user with predefined
settings to facilitate the formulation of spatio-temporal queries. We
follow the approach of GIS systems and want to allow web users to
create spatio-temporal queries in a graphical manner.

The Light-GUI contains MapBuilder [6] as a mapping client.
MapBuilder is lightweight (written entirely in Java Script), open-
source, and standard-compliant. The client is capable to render the
basic geometry GML types such as point, line, and region, which
is enough for a Web-GIS system. Through the integration of AJAX
[20], the data transfer between client and server (WMS/WES) is
done asynchronously, which avoids latencies when loading images.
Its implementation is based on the Model-View-Controller concept,
which provides a clear separation of presentation and application
content.

Note that for visualizing spatio-temporal data, the Light-GUI
does not rely on a WMS server that generates static images con-
tinuously. This would yield an unacceptable system load. Instead,
it obtains the spatio-temporal data from the ST Server. It interprets
a GML document (WFS response) that contains moving points ei-
ther in the GML TimeSlices or in the GML MovingObjectUnit rep-
resentation. The moving point is visualized by advancing through
its states in discrete time steps. At each step, we advance to the next
state and make it visible on the screen, while the last visible state is
made invisible. The states given explicitly in the GML document
are always displayed. We control the precision of the visualiza-
tion by following a simple heuristic: if the temporal and/or spatial
distance between two consequent states exceeds a certain thresh-
old, then the intermediate state obtained by a linear interpolation is
additionally displayed.

The rendering engine provides the Light-GUI with results of spa-
tial user queries in the form of lightweight images. At the moment,
we use UMN-MapServer [30], but it is easily possible to use any
other OGC-compliant rendering engine.

4.2 Query Specification

Standard WEB-GIS applications provide a configurable system:
in a configuration file, the maintainer of the application specifies the
functionality to be available for the web user, the available layers in
the map, etc. Our Light-GUI follows the exact same approach. For
setting up a working system, the maintainer of the web site, has to
provide three different files. The first file, the main configuration
file, specifies the available GIS functionality (zooming, panning,
buffering, feature querying, etc.) that is already implemented on
the client and other useful widgets to be offered to the user. By
enabling them they can be used without additional implementation
effort. The second file, the HTML page, specifies the layout of
the application (i.e., where to position the map or where to set the
action commands). The third file, called context file, specifies the
displayed data: that includes the name of layers and features. It also
contains the style of layer rendering and the coordinate reference
system (EPSG code). In contrast to features layers are rendered on
the server side.

EXAMPLE 4.1. Layer Specification in MapBuilder

<Layer queryable="1" hidden="0">
<Server service="OGC:WMS" version="1.1" title="0GC:WMS">
<OnlineResource xlink:type="simple"

T e

[1 oo b zcadiazecinn

spatio-temporal
. ‘data . .

G- o gl

«GML format»

WFS

Belhui: & provotype fon the Wswalkzuben of moving dbjects n the web

Ndma e [T 5 e

A rBa B

Light-GUI (

L b R et

pBuilder

20 Lapmiaiens ne

i

Figure 2: Architecture of the System

xlink:href="http: //www.inf.unibz.it/dis/maps/cgi—bin/mapserv" />
</Server>
<Name>Districts </Name>
<Title>Districts </Title >
<SRS>EPSG:4258 </SRS>
<FormatList>

<Format current="1">image/png </Format>
</FormatList>
<StyleList>

<Style current="1">

<Name>default </Name>

<Title >default </Title >

</Style >
</StyleList >
</Layer>

Example 4.1 shows how a layer element is specified in the context
file. The layer Districts fetched from the host inf.unibz.it/dis will
be displayed within the map of our client.

Spatial Query Specification The client offers predefined spa-
tial queries implemented in widgets. For example if a user wants
to execute a zoom query, he specifies in the map his area of interest
with a bounding box. The client collects these values (BBOX) and
the input values from the HTML document (LAYERS), adds addi-
tional parameters (WIDTH, HEIGHT, SERVICE, VERSION) from
the other configuration files and sends the following WMS request
to the rendering engine:

EXAMPLE 4.2. WMS GET request

http://www.inf.unibz.it/dis/maps/cgi—bin/mapserv?
SERVICE=WMS&

VERSION=1.1.1&

REQUEST=GetMap&

FORMAT=image /png&

STYLES&

SRS=EPSG:4258&

WIDTH=400&

HEIGHT=400&

LAYERS=Districts&
BBOX=674100,5145567,686620,5155835

The WMS compliant rendering engine interprets this request,
processes the query, and sends the produced map back to the re-
questor. This map will be updated on the client.

Spatio-Temporal Query Specification Spatio-temporal infor-
mation is roughly queried like spatial information. The two dif-
ferences are WES requests to the spatio-temporal server and the

client side rendering of GML objects. Spatio-temporal queries in
comparison to spatial queries are much more complex, because in
addition to the spatial aspect, the temporal aspect must be consid-
ered.

Therefore our goal is to facilitate to web users the formulation of
spatio-temporal queries, using a graphical approach. A real world
scenario might be a tourist that wants to get the following informa-
tion from the system (see Example 4.3)

EXAMPLE 4.3. Example of a spatio-temporal query

Show all buses that are inside the district ” Industriezone”
of Bozen-Bolzano, on June 1, 2007, between 10:00 and
10:30 AM.

In order to answer the query in Example 4.3 we have to formu-
late a spatio-temporal query. One possibility is to formulate it in
Secondo’s algebra (see Example 4.4).

EXAMPLE 4.4. Example Query in Relational Algebra

I Buses.id, Buses.busLine, Buses.dynamicGeometry (
9 Districts.name="Industriezone”
A Buses.dynamicGeometry.between
72007—06—017'10:00” and” 2007 —06—017'10:30”
A Buses.dynamicGeometry.passes(Districts.geometry)
(Buses X Districts))

Districts is a relation with the non-spatial attribute ”"name” of
type ”string” and the spatial attribute ”geometry” of type “region”.
Buses is a relation with the spatio-temporal attribute ’dynamicGe-
ometry” of type “mpoint”. The predicate between checks whether
a given moving point is defined during a given time interval. The
predicate passes is used as a join condition. It tests if that moving
point ever gets inside a region.

Instead of an algebraic expression we can use Secondo’s SQL-
like query language (see Example 4.5). The optimizer takes the
SQL query and produces an efficient algebraic expression. In the
example below ti represents a time interval.

EXAMPLE 4.5. Query in Secondo’s SQL syntax

select [B:id,B:busLine,B:dynamicGeometry]

from [Districts as D, Buses as B |
where [B:dynamicGeometry present ti,
D:name = "Industriezone",

B:dynamicGeometry passes D:geometry |

We follow the approach used on OGC compliant systems to query
spatial features. This means that we use OGC’s FEIS to specify fil-
ter criteria on the features to be queried. As already mentioned in
Section 2, FEIS does not support any spatio-temporal operators and
predicates. Hence, we extend FEIS with new spatio-temporal op-
erators and predicates. Our main objective is not to maximize the
expressiveness, but to seamlessly extend the filtering encoding to
support spatio-temporal predicates.

Example 4.6 shows how an SQL expression can be mapped into a
WEFS-GetFeature request. The join condition is implicitly specified
in the attribute “typeName” within the element wfs:Query that con-
tains the two features (Buses and Districts) to be joined in combina-
tion with selection predicates. The predicates ogc: PropertylsEqual
and ogc:Between, already defined in FEIS, are reused. In order to
maintain as much as possible the existing OGC operators we re-
place Secondo’s predicate present with ogc:Between and "=’ with
ogc:PropertylsEqual. The spatio-temporal predicate ogc:Passes is
a new operator that corresponds to operator passes in Secondo.

EXAMPLE 4.6. WES POST request

<?xml version="1.0" encoding="UTF—8"?>
<wfs:GetFeature xmlns:wfs="http: //www.opengis.net/wfs" xmlns:ogc="http: //www.
opengis.net/ogc"
xmlns="http://www. inf.unibz.it/dis/bzl0m" version="1.0.0" service="WFS"
maxFeatures="100">
<wfs:Query typeName="Buses=B, Districts=D">
:PropertyName>B. id</wfs:PropertyName>
<wfs:PropertyName>B. busLine</wfs:PropertyName>
<wfs:PropertyName>B. dynamicGeometry</wfs:PropertyName>
<ogc:Filter>
<ogc:And>
<ogc:PropertylsEqualTo>
<ogc:PropertyName>D.name</ogc:PropertyName>
<ogc:Literal>Industriezone</ogc:Literal>
</ogec:PropertylsEqualTo>
<ogc:Between>
<ogc:PropertyName>B. dynamicGeometry</ogc:PropertyName>
<ogc:LowerBoundary>
<ogc:Literal>2007—06—0I1T10:00</o0gc:Literal>
</ogc:LowerBoundary>
<ogc:UpperBoundary>
<ogc:Literal>2007—06—0I1T10:30</o0gc:Literal>
</ogc:UpperBoundary>
</ogc:Between>
<ogc:Passes>
<ogc:PropertyName>B. dynamicGeometry</ogc:PropertyName>
<ogc:PropertyName>D. geometry</ogc:PropertyName>
</ogc:Passes>
</ogc:And>
</ogc:Filter>
</wfs:Query>
</wfs:GetFeature>

As mentioned before, we want to facilitate the formulation of
spatio-temporal queries. Therefore the web user should be able to
create the WFS request from Example 4.6 in a graphical manner.
In order to create this request, the user selects the dynamic feature
Buses from a combo box, specifies the time period from a calendar,
selects the spatial layer district again from a combo box, and types
in a text field the district name. In addition, he selects the spatio-
temporal predicate that is applied. The client parses the HTML
document and converts (with an XSLT stylesheet) the specified in-
put values into a corresponding WFS request with some filter ex-
pression. The request is sent to the spatio-temporal system. The
system converts the request into the Secondo understandable query
language and sends it to the database. The converter converts the
result again into GML and sends the XML document as a WFS re-
sponse back to the client. Now the client interprets this document
and renders the moving point.

Figure 3 shows a snapshot captured on June 1, 2007, at 10:01
AM. Hence, the image not only shows buses that are inside the

Figure 3: Result of the Spatio-Temporal Query

specified district at this moment, but also those buses that will pass
the district in the future within the specified time interval.

At the moment in the HTML document there are specified this
necessary input values, that the user selects to formulate a spatio-
temporal WFS request. In the future it should be possible to specity
this parameters in a configuration file, where the maintainer of the
project specifies, what kind of spatio-temporal queries are available
for the user.

4.3 Our System vs. Secondo

This section provides a more detailed comparison between our
system and Secondo.

In a web setting a bottleneck of Secondo is the client-side ren-
dering. In a typical case, many map layers must be visualized (e.g.,
buildings, streets, bus stops, traffic lights, etc.) Each layer must
be converted into a graphical object. Therefore, a lot of data must
be retrieved and processed. With our system, the rendering engine
produces a compact image file. It is possible to further improve
performance by obtaining two independent spatial layers from two
different rendering engines.

In addition, as mentioned in Section 4.2, in order to obtain the re-
sult of spatio-temporal queries on our system (e.g., the query from
Example 4.4 visualized as in Figure 3), only a small amount of stan-
dard configurations are needed (e.g., specifying the layers). With
Secondo, the user must go through a sequence of steps to do the
configuration. Specifically, first, the user needs to load the spa-
tial layer Districts and specify its layout (colors, border style, etc.).
Second, the user needs to load the second layer that describes the
bus route. Finally, the user must type the query expression from Ex-
ample 4.5 to obtain the trajectories of the queried spatio-temporal
layer. After these steps, the user may store the layout configuration
in a file and save the launched commands in a session to reuse them
at later time. Thus, with Secondo, the user has more flexibility but
must make a bigger initial effort.

With our system, the user can easily use standard features of GIS
systems, such as obtaining an integrated overview map for better
navigation, legends for layers, and other spatial utilities (e.g., scale-
bar, history buttons, etc.).

Figure 4: Unit-Gap Proportion

Because of the open, service oriented architecture of our ST
Server, other systems may also use the services provided by the
server. The data exchange formats used by our system (e.g., our
GML representations of moving points, etc.) follow the XML stan-
dard and is easily handled by most systems.

A drawback of our system is the duplicate storage of some spa-
tial data. For example, in order to process the query from Exam-
ple 4.4, the Districts relation must be stored both in the rendering
engine and in Secondo. Secondo uses the relation for processing
the spatio-temporal join, while the rendering engine uses the rela-
tion for rendering. The problem arises because the rendering engine
cannot interpret spatial geometries stored in Secondo databases.

As mentioned above Secondo’s client offers more flexibilty in
the formulation of queries. Queries are expressed in Secondo’s
SQL-like query language or in Second Order Signature. The lat-
ter language is very powerful, not limited to geographic data, and
offers in addition to the query operators also constructs to define
objects at runtime. For advanced users this powerful functionality
is very useful.

A possible advantage of Secondo’s heavy client is that the object
structure of the data is present. This might be used for editing spa-
tial and spatio-temporal data. In our client the spatial information
are only available in a rendered image. Even if the data are fetched
via WES we do not have the entire object structure on the client
side. Therefore Secondo’s client is better suited for editing spatial
and spatio-temporal data.

S. EXPERIMENTS

This section presents experimental evaluation of the GML repre-
sentations of moving points from Section 3.

For our experiments, we use real-world data on city bus num-
ber 10A of Bozen-Bolzano, Italy. We have 10 data sets. Each data
set contains 120 moving points. Each moving point represents one
complete route of a physical bus (i.e., its movement from the start
stop to the end stop). Thus, the same physical bus is represented
by as many moving points as many times it traverses its complete
route. For every data set, the total lifespan of all the moving points
covers one day (i.e., 6 AM —9PM). The difference of the data sets is
as follows: the moving points from different data sets have different
frequency of gaps in their definition time. Specifically, there is one
data set without gaps. Then, there is one data set with a gap instead
of every n'" unit, termed a data set with (n-1):1 unit-gap propor-
tion, forn = 2,...,10. Figure 4 illustrates the idea of the data sets
with 2:1 and 1:1 unit gap proportion. The data set with no gaps con-
tains 22080 units. Figure 5 compares the size of GML documents
generated in response to the query that asks for a complete data
set. We can see that for the low values of n (i.e., frequent gaps) the
GML MovingObjectUnit representation is preferable, while for the
high values of n (i.e., rare gaps) the GML TimeSlice representation
is preferable. The reason for this is as follows: the more frequent
the gaps, the less units per moving point, while the number of states

12000 r . . .]
MovingPointUnit —+—

TimeSlice -

11000 r
10000 r
9000 r

Size [KB]

8000 r
7000 r
6000 r

5000 e S— :
1:12:13:14:15:16:17:18:19:1 no gaps
Unit - Gap Proportion

Figure 5: Size Comparison between TimeSlice and MovingOb-
jectUnit

10000

9000 f MovingPointUnit —+— 1
TimeSlice —>—

8000 r X 1

~~~~~ s

7000 r X

6000

Time [ms]

5000 r

4000

3000 e :
1:12:13:14:15:16:17:18:19:1 no gaps
Unit - Gap Proportion

Figure 6: Time Comparison between TimeSlice and Movin-
gObjectUnit

remains the same. Recall that the GML MovingObjectUnit repre-
sentation captures units, while the GML TimeSlice representation
captures states. In other words, with rare gaps, in the MovingOb-
jectUnit representation, for many units, the end point of each unit
will be the same as the start point of its successor. Therefore, many
points are stored twice. At the same time, with frequent gaps, each
TimeSlice element is hold in a separate parent element (history),
while there is always one parent element (units) for all the units.
Note that the GML TimeSlice representation does not depend on
the unit-gap proportion.

Figure 6 compares the time needed for generation of the GML
documents in response to the query that asks for a complete data
set. For each data set, 100 identical queries were issued. The fig-
ure presents the average time per one query. We can see that the
GML MovingObjectUnit representation is always faster than the
GML TimeSlice representation. This is because in order to convert
moving point unit from the nested list format to the GML TimeS-
lice representation, we need to check whether there is a gap and
for each gap we need to create a new parent element. In both the
figures, all the curves (except the TimeSlice curve in Figure 5) are
increasing, because the less gaps the moving point has, the larger
its nested list is.

6. CONCLUSION AND FUTURE WORK



Spatio-temporal databases are an active area of research. Many
research challenges have been solved during the last years and the
first systems are being deployed. At the same time web applications
are getting more and more important and are often as widespread
as standalone applications. Service oriented architectures are the
standard approach to make services available over the Internet. In
this paper we show how to integrate current state of the art sys-
tems for spatio-temporal and geographic data to build web-based
information systems for moving objects. We show how to repre-
sent moving points in a standard XML-conform format and how to
extend GML with a type for trajectories with gaps.

In order to query spatio-temporal data we assumed the spatio-
temporal operators from Secondo and focused on moving points.
In the future, we will integrate other spatio-temporal data types
(e.g., moving regions) and model them with GML. To reduce the
latency when querying spatio-temporal information we need novel
solutions that decrease the size of the document sent to the client.
A promising direction is to send data according to the zoom factor.
Also there is a need for query processing techniques that take into
account that data is managed by different systems.

7. REFERENCES

[1] J. Beaujardiere. Ogc web map service interface. Technical
report, Open GIS Consortium, 2004.

[2] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis.
Nearest and reverse nearest neighbor queries for moving
objects. VLDB J., 15(3):229-249, 2006.

[3] M. Breunig, C. Tiirker, M. H. Bohlen, S. Dieker, R. H.
Giiting, C. S. Jensen, L. Relly, P. Rigaux, H.-J. Schek, and
M. Scholl. Architectures and implementations of
spatio-temporal database management systems. In
Spatio-Temporal Databases: The CHOROCHRONOS
Approach, pages 263-318, 2003.

[4] T. Brinkhoff and J. Weitkdmper. Continuous queries within
an architecture for querying xml-represented moving objects.
In SSTD, pages 136-154, 2001.

[5] G. Community. Geoserver, an open source server that
connects your information to the geospatial web.

[6] M. Community. Mapbuilder, a web mapping client.

[7]1 O. G. Consortium. Ogc implementors.

[8] S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside.
Geographic information- geographic markup language (gml)
v 3.1 - iso/tc 211/wg 4/pt 19136. Technical report, Open GIS
Consortium, 2004.

[9] R. East, R. K. Goyal, A. Haddad, A. Konovalov, A. Rosso,
M. Tait, and J. Theodore. The architecture of arcims, a
distributed internet map server. In SSTD, pages 387403,
2001.

[10] A. Foundation. Apache module mod_deflate.

[11] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. The
dedale prototype. In Constraint Databases, pages 365-382,
2000.

[12] S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-temporal
data handling with constraints. Geolnformatica,
5(1):95-115, 2001.

[13] R. H. Giiting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation
for representing and quering moving objects. ACM Trans.
Database Syst., 25(1):1-42, 2000.

[14] R. H. Giiting, V. T. de Almeida, D. Ansorge, T. Behr,

Z. Ding, T. Hose, F. Hoffmann, M. Spiekermann, and

U. Telle. Secondo: An extensible dbms platform for research
prototyping and teaching. In /CDE, pages 1115-1116, 2005.

[15] R. H. Giiting, V. T. de Almeida, and Z. Ding. Modeling and
querying moving objects in networks. VLDB J.,
15(2):165-190, 2006.

[16] X.Huang, C. S. Jensen, and S. Saltenis. Multiple k nearest
neighbor query processing in spatial network databases. In
ADBIS, pages 266-281, 2006.

[17] C.S. Jensen, J. Kolar, T. B. Pedersen, and I. Timko. Nearest
neighbor queries in road networks. In GIS, pages 1-8, 2003.

[18] C.S. Jensen, D. Lin, and B. C. Ooi. Query and update
efficient b+-tree based indexing of moving objects. In VLDB,
pages 768-779, 2004.

[19] J. A. C. Lema, L. Forlizzi, R. H. Giiting, E. Nardelli, and
M. Schneider. Algorithms for moving objects databases.
Comput. J., 46(6):680-712, 2003.

[20] S. Olson. Ajax on Java. O’Really, 2007.

[21] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing
spatio-temporal data warehouses. In ICDE, pages 166-175,
2002.

[22] M. Pelanis, S. Saltenis, and C. S. Jensen. Indexing the past,
present, and anticipated future positions of moving objects.
ACM Trans. Database Syst., 31(1):255-298, 2006.

[23] D. Pfoser and C. S. Jensen. Indexing of network constrained
moving objects. In GIS, pages 25-32, 2003.

[24] L. Relly, A. Kuckelberg, and H.-J. Schek. A framework of a
generic index for spatio-temporal data in concert. In
Spatio-Temporal Database Management, pages 135-151,
1999.

[25] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In ICDE, pages
422-432, 1997.

[26] L. Speicys, C. S. Jensen, and A. Kligys. Computational data
modeling for network-constrained moving objects. In GIS,
pages 118-125, 2003.

[27] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the
past, the present, and the future in spatio-temporal databases.
In ICDE, pages 202-213, 2004.

[28] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias.
Spatio-temporal aggregation using sketches. In /CDE, pages
214-226, 2004.

[29] G. Trajcevski, O. Wolfson, H. Cao, H. Lin, F. Zhang, and
N. Rishe. Managing uncertain trajectories of moving objects
with domino. In ICEIS, pages 218-225, 2002.

[30] R.R. Vatsavai, S. Shekhar, T. E. Burk, and S. Lime.
Umn-mapserver: A high-performance, interoperable, and
open source web mapping and geo-spatial analysis system.
In GIScience, pages 400—417, 2006.

[31] P. Vretanos. Ogc filter encoding implementation
specification. Technical report, Open GIS Consortium, 2005.

[32] P. Vretanos. Ogc web feature service implementation.
Technical report, Open GIS Consortium, 2005.

[33] Wikipedia. Reification.



