
 © Clear View Training 2008 v2.5 1

OO Analysis and Design
with UML 2 and UP

Dr. Jim Arlow, 
Zuhlke Engineering Limited



 © Clear View Training 2008 v2.5 2

Analysis - 
advanced use case 
realization



 © Clear View Training 2008 v2.5 3

Interaction occurrences

 An interaction use is inserted into 
the including interaction
 All lifelines in the interaction use 

must also be in the including 
interaction

 Be very aware of where the 
interaction use leaves the focus of 
control!

 Draw the interaction use across the 
lifelines it uses

:A :B
m1

sd I1

:A :B :C

ref
I1

n1
n2

n3

sd I2

interaction 
use

interaction

Sequence of messages in I2:
n1
n2
m1               from I1
n3

13.2



 © Clear View Training 2008 v2.5 4

sd I3(p1:String):String

Parameters

 Interactions may be parameterized
 This allows specific values to be supplied to 

the interaction in each of its occurrences
 Specify parameters using operation syntax
 Values for the parameters are supplied in 

the interaction occurrences
 Interactions may return values

 You can show a specific return value as a 
value return e.g. 
A:a = I3( "value" ):"ret"

:A :B

m1(p1)

:A :B :C

ref

n1
n2

n3

sd I4

attribute a of 
class A gets the 
return value of 
I3

interaction 
parameters

A.a = I3( "value" )

Sequence of messages in I4:
n1
n2
m1( "someValue" ) (from I1)
n3

13.2.1



 © Clear View Training 2008 v2.5 5

Gates

 Gates are inputs and outputs 
of interactions (and combined 
fragments – see next slide)
 Provide connection points that 

relate messages inside an 
occurrence or fragment to 
messages outside it

D B

m1

sd I1

A B C

ref
I1

n1
n2

n3

sd I2interactio
n

m0

r m0

r

internal and 
external 
messages 
must match

Sequence of messages in I2:
n1
n2
m0         
m1         
n3

from I1

13.2.2



 © Clear View Training 2008 v2.5 6

handle course option

Continuations
 Continuations allow an interaction fragment to terminate in such a 

way that it can be continued by another fragment

:Registrar
:RegistrationUI :RegistrationManager

ref
get course option

addCourse
alt

removeCourse

findCourse

addCourse( name )

removeCourse( name )

findCourse( name )

:Registrar :RegistrationUI

option = get option

addCourse
alt

removeCourse

get course option

findCourse

name = get course name

[option = add]

[option = remove]

[option = find] continuation

13.3



 © Clear View Training 2008 v2.5 7

Summary
 In this section we have looked at:

 Interaction occurrences
 Parameters
 Gates
 Continuations

13.4



 © Clear View Training 2008 v2.5 8

Analysis - activity 
diagrams



 © Clear View Training 2008 v2.5 9

What are activity 
diagrams?

 Activity diagrams are "OO flowcharts"!
 They allow us to model a process as a collection 

of nodes and edges between those nodes
 Use activity diagrams to model the behavior of:

 use cases
 classes
 interfaces
 components
 collaborations
 operations and methods
 business processes

14.2



 © Clear View Training 2008 v2.5 10

Activities
 Activities are networks of nodes connected by edges
 There are three categories of node:

 Action nodes - represent discrete units of work that are atomic 
within the activity

 Control nodes - control the flow through the activity
 Object nodes - represent the flow of objects around the activity

 Edges represent flow through the activity
 There are two categories of edge:

 Control flows - represent the flow of control through the activity
 Object flows - represent the flow of objects through the activity

14.4



 © Clear View Training 2008 v2.5 11

Activity diagram syntax
 Activities are networks of nodes 

connected by edges
 The control flow is a type of edge

 Activities usually start in an initial 
node and terminate in a final node

 Activities can have preconditions 
and postconditions

 When an action node finishes, it 
emits a token that may traverse an 
edge to trigger the next action

 This is sometimes known as a 
transition

 You can break an edge using 
connectors:

Address letter

Post letter

Write letter
action 
node

Send letter

control 
flow

activity

initial node

final node

precondition: know topic for letter
postcondition: letter sent to address

edge
«localPrecondition»
address is known

«localPostcondition»
letter is addressed

AA

incoming
connector

outgoing
connector

14.4



 © Clear View Training 2008 v2.5 12

Activity diagram 
semantics

 The token game
 Token – an object, some data or a focus of control
 Imagine tokens flowing around the activity diagram

 Tokens traverse from a source node to a target node 
via an edge

 The source node, edge and target node may all have 
constraints controlling the movement of tokens

 All constraints must be satisfied before the token can 
make the traversal

 A node executes when:
 It has tokens on all of its input edges AND these tokens 

satisfy predefined conditions (see later)
 When a node starts to execute it takes tokens off its 

input edges
 When a node has finished executing it offers tokens 

on its output edges 

Address letter

Post letter

Write letter

Send letter

imaginary flow of control token

«localPrecondition»
address is known

«localPostcondition»
letter is addressed

14.5



 © Clear View Training 2008 v2.5 13

Activity partitions

Location

Marketing Development

Create course 
business case

Develop 
course

Scheduling

Book trainers

Book rooms
Market 
course

Course production dimension name

activity partition

Schedule 
course

Zurich London

 Each activity partition 
represents a high-level grouping 
of a set of related actions

 Partitions can be hierarchical
 Partitions can be vertical, 

horizontal or both
 Partitions can refer to many 

different things e.g. business 
organisations, classes, 
components and so on

 If partitions can’t be shown 
clearly using parallel lines, put 
their name in brackets directly 
above the name of the activities

(London::Marketing)
Market product

(p1, p2)
SomeAction

multiple partitionsnested partitions

14.6



 © Clear View Training 2008 v2.5 14

Action nodes
 Action nodes offer a token on 

all of their output edges 
when:
 There is a token simultaneously 

on each input edge
 The input tokens satisfy all 

preconditions specified by the 
node

 Action nodes:
 Perform a logical AND on their 

input edges when they begin to 
execute

 Perform an implicit fork on their 
output edges when they have 
finished executing

Action node

Action node

Action node

input token

output token

action node does
not execute

action node does
not execute

action node
executes

14.7



 © Clear View Training 2008 v2.5 15

Types of action node

end of month occurred

time 
expression

event type

OrderEvent

wait 30 mins

Accept event action - waits for events detected by its owning 
object and  offers the event on its output edge.
Is enabled when it gets a token on its input edge.
If there is no input edge it starts when its containing activity starts 
and is always enabled.

Accept time event action - waits for a set amount of time.
Generates time events according to it's time expression.

action node syntax action node semantics

Close Order

Call action - invokes an activity, a behavior or an operation.
The most common type of action node.

See next slide for details.

signal type

OrderEvent

Send signal action - sends a signal asynchronously.
The sender does not wait for confirmation of signal receipt.

It may accept input parameters to create the signal

14.7



 © Clear View Training 2008 v2.5 16

Call action node syntax

Raise Order
call an activity 
(note the rake icon)

Close Order call a behavior

call an 
operation

getBalance():double
(Account::)

operation name
class name
(optional)

Get Balance
(Account::getBalance():double)

node name
operation name
(optional)

if self.balance <= 0:
   self.status = INCREDIT
else
   self.status = OVERDRAWN

programmin
g language 
(e.g. 
Python)

 The most common type 
of node

 Call action nodes may 
invoke:
 an activity
 a behavior
 an operation

 They may contain code 
fragments in a specific 
programming language
 The keyword 'self' refers 

to the context of the 
activity that owns the 
action

14.7.1



 © Clear View Training 2008 v2.5 17

Control nodes

Activity final node – terminates an activity

Flow final node – terminates a specific flow within an activity. 
The other flows are unaffected

Initial node – indicates where the flow starts when an activity is invoked

Merge node – selects one of its input edges

Fork node – splits the flow into multiple concurrent flows

Join node – synchronizes multiple concurrent flows
May optionally have a join specification to modify its semantics 

Fin
a
l n

o
d
e
s

«decisionInput»
decision condition

Decision node– guard conditions on the output edges select one of them 
for traversal
May optionally have inputs defined by a «decisionInput»

{join spec}

control node syntax control node semantics

S
e
e
 e

x
a
m

p
le

s o
n
 n

e
x
t tw

o
 slid

e
s

14.8



 © Clear View Training 2008 v2.5 18

Decision and merge nodes
 A decision node is a control node 

that has one input edge and two 
or more alternate output edges 
 Each edge out of the decision is 

protected by a guard condition
 guard conditions must be 

mutually exclusive
 The edge can be taken if and only 

if the guard condition evaluates to 
true

 The keyword else specifies the 
path that is taken if none of the 
guard conditions are true

 A merge node accepts one of 
several alternate flows
 It has two or more input edges 

and exactly one output edge

Bin mailOpen mail

Get mail

[is junk]else

Process mail

keyword
guard 
condition

decision 
node

merge node

14.8.2



 © Clear View Training 2008 v2.5 19

Fork and join nodes - 
concurrency

 Forks nodes model 
concurrent flows of work
 Tokens on the single input edge 

are replicated at the multiple 
output edges

 Join nodes synchronize two or 
more concurrent flows
 Joins have two or more incoming 

edges and exactly one outgoing 
edge

 A token is offered on the 
outgoing edge when there are 
tokens on all the incoming 
edges i.e. when the concurrent 
flows of work have all finished

Design new 
product

Market 
product

Manufacture
product

Sell 
product

Product process

fork node

join node

14.8.3



 © Clear View Training 2008 v2.5 20

Object nodes
 Object nodes indicate that instances of a 

particular classifier may be available
 If no classifier is specified, then the object 

node can hold any type of instance
 Multiple tokens can reside in an object 

node at the same time
 The upper bound defines the maximum 

number of tokens (infinity is the default)
 Tokens are presented to the single 

output edge according to an ordering:
 FIFO – first in, first out (the default)
 LIFI – last in, first out
 Modeler defined – a selection criterion is 

specified for the object node
OrderEvent

Orderobject
node

object
flow

object
node for 
signal

classifier name
or node name

14.9



 © Clear View Training 2008 v2.5 21

Object node syntax
 Object nodes have 

a flexible syntax. 
You may show:
 upper bounds
 ordering
 sets of objects
 selection criteria
 object in state

Order

Set of Order

Order
[open]

Order«selection»
monthRaised = "Dec" 

order objects may be available

sets of Order objects may be available

select Order objects in the open state

Order objects raised in December may be 
available

Order

{upperBound = 12}

zero to 12 Order objects may be available

Order

{ordering = LIFO}

last Order object in is the first out
(FIFO is the default)

14.9



 © Clear View Training 2008 v2.5 22

Activity parameters

 Object nodes can provide input and output parameters to activities
 Input parameters have one or more output object flows into the activity
 Output parameters have one or more input object flows out of the activity

 Draw the object node overlapping the activity boundary

Design bespoke 
product

Manufacture
product

Accept
payment

Deliver 
product

Marketing Manufacturing Delivery

Order
[paid]

CustomerRequest

Set of 
BusinessConstraint

Order
[delivered]

Bespoke product process

Order

input parameter

output
parameter

object flow
object in state

ProductSpecification

14.9.3



 © Clear View Training 2008 v2.5 23

Pins

 Pins are object nodes for inputs to, and outputs from, 
actions

 Same syntax as object nodes
 Input pins have exactly one input edge
 Output pins have exactly one output edge
 Exception pins are marked with an equilateral triangle
 Streaming pins are filled in black or marked with {stream}

GetUserName

GetPassword

UserName[valid]

Password[valid]

Authenticate
User LogError

LogOnException

LogOn

A B

A B
{stream}

streaming – see notes

pin
exception pin

14.10



 © Clear View Training 2008 v2.5 24

Summary
 We have seen how we can use activity diagrams to model 

flows of activities using:
 Activities

 Connectors
 Activity partitions
 Action nodes

 Call action node
 Send signal/accept event action node
 Accept time event action node

 Control nodes
 decision and merge
 fork and join

 Object nodes
 input and output parameters
 pins

14.11



 © Clear View Training 2008 v2.5 25

Analysis - advanced activity diagrams



 © Clear View Training 2008 v2.5 26

Interruptible activity 
regions

 Interruptible activity regions may be interrupted when 
a token traverses an interrupting edge
 All flows in the region are aborted

 Interrupting edges must cross the region boundary

GetUserName

GetPassword

UserName[valid]

Password[valid]

Authenticate
User LogError

LogOnException

LogOn

Cancelinterruptible 
activity region

interrupting edge

alternative notation

15.3



 © Clear View Training 2008 v2.5 27

Exception handling

 Protected nodes have exception handlers:
 When the exception object is raised in the protected node, 

flow is directed along an interrupting edge to the exception 
handler body

Handle file errorFileName

Set of Student

Create set of Students

java.io.IOException

exception handler action

exception type

protected
node

Read Student file

a set of Student objects

15.4



 © Clear View Training 2008 v2.5 28

Expansion nodes
 Expansion node – an object node 

that represents a collection of 
objects flowing into or out of an 
expansion region

 Output collections must  
correspond to input collections in 
collection type and object type!

 The expansion region is executed 
once per input element according 
to the keyword:

 iterative – process sequentially
 parallel – process in parallel
 stream – process a stream of 

input objects

Print Student

Print Students

Student
iterative

Expansion regions 
containing a single 
action - place the 
expansion node 
directly on the 
action

iterative

Set of Student Assess exam results

Grade Student

Set of Student

Grade Students

expansion
region

expansion
node

mode

15.5



 © Clear View Training 2008 v2.5 29

Sending signals and accepting 
events 

 Signals represent information passed 
asynchronously between objects
 This information is modelled as attributes of a 

signal
 A signal is a classifier stereotyped «signal»

 The accept event action asynchronously accepts 
event triggers which may be signals or other 
objects

Authorization
Event

Authorization
RequestEvent

Enter PIN

Not authorizedAuthorized

CardDetails

[isAuthorized] [!isAuthorized]

Validate card

send 
signal

accept
event

PIN

CardDetails

«signal»
AuthorizationRequestEvent

pin : PIN
cardDetails : CardDetails

«signal»
AuthorizationEvent

isAuthorized : Boolean

«signal»
SecurityEvent

15.6



 © Clear View Training 2008 v2.5 30

Advanced object flow
 Input effect 

 Specifies the effect of the action 
on objects flowing into it 

 Output effect
 Specifies the effect of the action 

on objects flowing out of it

 «selection» 
 the flow to selects objects that 

meet a specific criterion

 «transformation» 
 An object is transformed by the 

object flow

acceptPayment

Order
[paid]

sendReceipt

Receipt
{timestamp}

«transformation»
Order.toReceipt() : Receipt

sendReminder

Order
[!paid]

«selection»
Order.date – now > 28 days

Order

input effect

recordTransaction

Transaction
{create}output effect

15.8



 © Clear View Training 2008 v2.5 31

«multicast»

«multireceive»

Multicast and multireceive
 A «multicast» 

object flow 
sends an object 
to multiple 
receivers

 A 
«multireceive» 
object flow 
receives an 
object from 
multiple 
receivers

Identify need

Technical Group

Request for 
Proposal

RFP

Member

Create Proposal

Proposal
[Candidate]

Assess 
Proposals

Proposal
[Accepted]

Request for Proposals process

15.9



 © Clear View Training 2008 v2.5 32

[passphrase]

Parameter sets

 Parameter sets provide alternative sets of input pins and output pins to an 
action

 Only one input set and one output set may be chosen (XOR)

Authenticate

UserName

Password

Passphrase

PIN

Card

User
[Authenticated]

User
[!Authenticated]

Get UserName
and Passphrase 

Get UserName
and Password

Get Card
and PIN

Choose
authentication

method

[password]

[card]

User

Authenticate User

input condition: ( UserName AND Password ) XOR ( UserName AND Passphrase ) XOR ( Card 
AND PIN )
output: ( User [Authenticated] ) XOR ( User [!Authenticated] )

parameter set

15.10



 © Clear View Training 2008 v2.5 33

«centralBuffer» node

 Central buffer nodes accept multiple upstream object 
flows 

 They hold the objects until downstream nodes are 
ready for them

take web Orders

take phone Orders

take post Orders

«centralBuffer»
Order
[new]

Order
[new]

Order
[new]

Order
[new]

process Order
Order
[new]

Process Orders

15.11



 © Clear View Training 2008 v2.5 34

«create»

addCourse( “UML” )

[add] [find]

Interaction overview 
diagrams

 Model the high 
level flow of 
control between 
interactions

 Show 
interactions and 
interaction 
occurrences

 Have activity 
diagram syntax

sd ref

GetCourseOption

sd ref

RemoveCourse

sd ref

FindCourse

:Registrar
:RegistrationManager

uml:Course

sd AddCourse

sd ref

Logon

[remove]

sd ManageCourses lifelines :Registrar, :RegistrationUI, :Course

[exit]

else

inline interaction

interaction use

15.12



 © Clear View Training 2008 v2.5 35

Summary

 In this section we have looked at some of the 
more advanced features of activity diagrams:
 Interruptible activity regions
 Exception handlers
 Expansion nodes
 Advanced object flow
 Multicast and multireceive
 Parameter sets
 Central buffer nodes
 Interaction overview diagrams

15.13


	OO Analysis and Design with UML 2 and UP
	Analysis -  advanced use case realization
	Interaction occurrences
	Parameters
	Gates
	Continuations
	Slide 7
	Analysis - activity diagrams
	What are activity diagrams?
	Activities
	Activity diagram syntax
	Activity diagram semantics
	Activity partitions
	Action nodes
	Types of action node
	Call action node syntax
	Control nodes
	Decision and merge nodes
	Fork and join nodes - concurrency
	Object nodes
	Object node syntax
	Activity parameters
	Pins
	Slide 24
	Analysis - advanced activity diagrams
	Interruptible activity regions
	Exception handling
	Expansion nodes
	Sending signals and accepting events 
	Advanced object flow
	Multicast and multireceive
	Parameter sets
	«centralBuffer» node
	Interaction overview diagrams
	Slide 35

