
 © Clear View Training 2008 v2.5 1

OO Analysis and Design
with UML 2 and UP

Dr. Jim Arlow,
Zuhlke Engineering Limited

 © Clear View Training 2008 v2.5 2

Analysis - dependencies

 © Clear View Training 2008 v2.5 3

What is a dependency?
 "A dependency is a relationship between two elements where a

change to one element (the supplier) may affect or supply
information needed by the other element (the client)". In other
words, the client depends in some way on the supplier
 Dependency is really a catch-all that is used to model several different

types of relationship. We’ve already seen one type of dependency, the
«instantiate» relationship

 Three types of dependency:
 Usage - the client uses some of the services made available by the

supplier to implement its own behavior – this is the most commonly
used type of dependency

 Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

 Permission - the supplier grants some sort of permission for the client
to access its contents – this is a way for the supplier to control and
limit access to its contents

9.5

 © Clear View Training 2008 v2.5 4

Usage dependencies
 «use» - the client makes use of the supplier to

implement its behaviour
 «call» - the client operation invokes the supplier

operation
 «parameter» - the supplier is a parameter of the

client operation
 «send» - the client (an operation) sends the

supplier (a signal) to some unspecified target
 «instantiate» - the client is an instance of the

supplier

9.5.1

 © Clear View Training 2008 v2.5 5

«use» - example

A

foo(b : B)
bar() : B
doSomething()

B

A :: doSomething()
{
 B myB = new B();
 …
}

«use»

A «use» dependency is generated
between class A and B when:

1) An operation of class A needs a
parameter of class B

2) An operation of class A returns a
value of class B

3) An operation of class A uses an
object of class B somewhere in its
implementation

the stereotype is often omitted

9.5.1.1

 © Clear View Training 2008 v2.5 6

Abstraction dependencies
 «trace» - the client and the supplier represent the same

concept but at different points in development
 «substitute» - the client may be substituted for the

supplier at runtime. The client and supplier must realize
a common contract. Use in environments that don't
support specialization/generalization

 «refine» - the client represents a fuller specification of
the supplier

 «derive» - the client may be derived from the supplier.
The client is logically redundant, but may appear for
implementation reasons

9.5.2

 © Clear View Training 2008 v2.5 7

«derive» - example

BankAccount Transaction
1 0..*

Quantity

1

1

1balance

«derive»

BankAccount Transaction
1 0..*

Quantity

1

1

1/balance

BankAccount Transaction
1 0..*

/balance:Quantity

Quantity

1

1

This example shows
three possible ways
to express a «derive»
dependency

9.5.2.4

 © Clear View Training 2008 v2.5 8

Permission dependencies
 «access»

 The public contents of the supplier package are
added as private elements to the namespace of the
client package

 «import»
 The public contents of the supplier package are

added as public elements to the namespace of the
client package

 «permit»
 The client element has access to the supplier

element despite the declared visibility of the supplier

9.5.3

 © Clear View Training 2008 v2.5 9

Summary

 Dependency
 The weakest type of association
 A catch-all

 There are three types of dependency:
 Usage
 Abstraction
 Permission

9.6

 © Clear View Training 2008 v2.5 10

Analysis –
inheritance and
polymorphism

 © Clear View Training 2008 v2.5 11

Generalisation

 A relationship between a more general
element and a more specific element

 The more specific element is entirely
consistent with the more general element
but contains more information

 An instance of the more specific element
may be used where an instance of the
more general element is expected

Substitutability
Principle

10.2

 © Clear View Training 2008 v2.5 12

Example: class
generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent
superclass
base class
ancestor

child
subclass
descendent

g
e
n

e
ra

lisa
tio

n sp
e

cia
lisa

tio
n

A generalisation hierarchy

“is kind of”

10.2.1

 © Clear View Training 2008 v2.5 13

Class inheritance
 Subclasses inherit all features of

their superclasses:
 attributes
 operations
 relationships
 stereotypes, tags, constraints

 Subclasses can add new features
 Subclasses can override

superclass operations
 We can use a subclass instance

anywhere a superclass instance
is expected

Substitutability
Principle

Shape
origin : Point = (0,0)
width : int {>0}
height : int {>0}

draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

radius : int = width/2
{width = height}

But what’s wrong with

these subclasses

10.3

 © Clear View Training 2008 v2.5 14

Overriding

 Subclasses often need to override superclass behaviour
 To override a superclass operation, a subclass must provide

an operation with the same signature
 The operation signature is the operation name, return type and types

of all the parameters
 The names of the parameters don’t count as part of the signature

Shape
draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : intwidth x height π x radius2

10.3.1

 © Clear View Training 2008 v2.5 15

Abstract operations &
classes

 We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

 Operations that lack an implementation are abstract operations
 A class with any abstract operations can’t be instantiated and is therefore an

abstract class

concrete
operations

Shape

draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : int

abstract class

concrete
classes

abstract
operations

abstract class
and operation
names must
be in italics

10.3.2

 © Clear View Training 2008 v2.5 16

Exercise

Vehicle

JaguarXJS Truck

what’s
wrong with
this model?

10.3.3

 © Clear View Training 2008 v2.5 17

Polymorphism
 Polymorphism = "many forms"

 A polymorphic operation has
many implementations

 Square and Circle provide
implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

 All concrete subclasses of Shape
must provide concrete draw()
and getArea() operations
because they are abstract in the
superclass
 For draw() and getArea() we can

treat all subclasses of Shape in a
similar way - we have defined a
contract for Shape subclasses

Shape

draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : int

polymorphic
operations

concrete subclasses

abstract
superclass

Canvas

*

1

A Canvas object has a collection of Shape
objects where each Shape may be a Square
or a Circle

shapes

10.4

 © Clear View Training 2008 v2.5 18

What happens?
 Each class of object has

its own implementation
of the draw() operation

 On receipt of the draw()
message, each object
invokes the draw()
operation specified by
its class

 We can say that each
object "decides" how to
interpret the draw()
message based on its
class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()

10.4.1

 © Clear View Training 2008 v2.5 19

BankAccount example
BankAccount

withdraw()
calculateInterest()
deposit()

CheckingAccount DepositAccount

withdraw()
calculateInterest()

withdraw()
calculateInterest()

Bank
*1

10.4.1

 © Clear View Training 2008 v2.5 20

BankAccount example

 We have overridden the deposit() operation even though it is not
abstract. This is perfectly legal, and quite common, although it is
generally considered to be bad style and should be avoided if possible

BankAccount
withdraw()
calculateInterest()
deposit()

CheckingAccount DepositAccount

withdraw()
calculateInterest()

withdraw()
calculateInterest()

Bank
*1

ShareAccount
withdraw()
calculateInterest()
deposit()

10.4.1

 © Clear View Training 2008 v2.5 21

Summary

 Subclasses:
 inherit all features from their parents

including constraints and relationships
 may add new features, constraints and

relationships
 may override superclass operations

 A class that can’t be instantiated is an
abstract class

10.6

	OO Analysis and Design with UML 2 and UP
	Analysis - dependencies
	What is a dependency?
	Usage dependencies
	«use» - example
	Abstraction dependencies
	«derive» - example
	Permission dependencies
	Slide 9
	Analysis – inheritance and polymorphism
	Generalisation
	Example: class generalisation
	Class inheritance
	Overriding
	Abstract operations & classes
	Slide 16
	Polymorphism
	What happens?
	BankAccount example
	Slide 20
	Slide 21

