
 © Clear View Training 2008 v2.5 1

Design - state machines



 © Clear View Training 2008 v2.5 2

State machines
 Some model elements such as classes, use cases and subsystems, can have 

interesting dynamic behavior - state machines can be used to model this 
behaviour

 Every state machine exists in the context of a particular model element that:
 Responds to events dispatched from outside of the element
 Has a clear life history modelled as a progression of states, transitions and events. 

We’ll see what these mean in a minute!
 Its current behaviour depends on its past

 A state machine diagram always contains exactly one state machine for one 
model element

 There are two types of state machines (see next slide):
 Behavioural state machines - define the behavior of a model element e.g. the 

behavior of class instances
 Protocol state machines - Model the protocol of a classifier

 The conditions under which operations of the classifier can be called
 The ordering and results of operation calls 
 Can model the protocol of classifiers that have no behavior (e.g. interfaces and ports)

21.2



 © Clear View Training 2008 v2.5 3

State machine diagrams

state = 
off

Off On

Off On
turnOff

 We begin with the 
light bulb in the state 
off

burnOut

light bulb {protocol}
turnOn

21.4



 © Clear View Training 2008 v2.5 4

Light bulb turnOn

State = 
off

Off On

Off On
turnOn

turnOff

 We throw the switch to On 
and the event turnOn is sent 
to the lightbulb

burnOut

Event = 
turnOn

light bulb {protocol}

21.4



 © Clear View Training 2008 v2.5 5

Light bulb On

State = 
on

Off On

Off On
turnOn

turnOff

 The light bulb turns 
on

burnOut

light bulb {protocol}

21.4



 © Clear View Training 2008 v2.5 6

 We turn the switch to 
Off. The event turnOff 
is sent to the light 
bulb

Light bulb turnOff

State = 
on

Off On

Off On
turnOn

turnOff
burnOut

Event = 
turnOff

light bulb {protocol}

21.4



 © Clear View Training 2008 v2.5 7

Light bulb Off

state = 
off

Off On

Off On
turnOff

burnOut

turnOn

 The light bulb turns 
off

light bulb {protocol}

21.4



 © Clear View Training 2008 v2.5 8

Basic state machine 
syntax

 Every state machine should have a start state which 
indicates the first state of the sequence

 Unless the states cycle endlessly, state machines 
should have a final state which terminates the 
sequence of transitions 

 We’ll look at each element of the state machine in 
detail in the next few slides!

A B
anEvent

start state transition

event

state final state

21.4



 © Clear View Training 2008 v2.5 9

States
 "A condition or situation during the 

life of an object during which it 
satisfies some condition, performs 
some activity or waits for some 
event"

 The state of an object at any point 
in time is determined by:
 The values of its attributes
 The relationships it has to other 

objects
 The activities it is performing

Color

red : int
green : int
blue : int

How many states?

21.5



 © Clear View Training 2008 v2.5 10

State syntax
 Actions are instantaneous 

and uninterruptible
 Entry actions occur 

immediately on entry to 
the state

 Exit actions occur 
immediately  on leaving 
the state

 Internal transitions occur 
within the state. They do 
not transition to a new 
state

 Activities take a finite 
amount of time and are 
interruptible

  EnteringPassword

entry/display password 
dialog

exit/validate password 

keypress/ echo "*"

help/display help

do/get password

entry and 
exit actions

internal 
transitions

internal 
activity

Action syntax: eventTrigger / 
action
Activity syntax: do / activity

state name

21.5.1



 © Clear View Training 2008 v2.5 11

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}

protocol 
state 

machine

behaviora
l state 

machine
events Boolean

guard condition
actions

precondition events postcondition

21.6



 © Clear View Training 2008 v2.5 12

Connecting - the junction pseudo 
state

 The junction 
pseudo state can:
 connect transitions 

together (merge)
 branch transitions

 Each outgoing 
transition must 
have a mutually 
exclusive guard 
condition

A

B

C

t1

t2

simple merge junction

simple merge example

A

B

C
t1

t2

D

[c1]

[c2]

merge with branch

junction with
merge and branch

21.6.1



 © Clear View Training 2008 v2.5 13

Branching – the choice pseudo 
state

 The choice pseudo 
state directs its 
single incoming 
transition to one of 
its outgoing 
transitions

 Each outgoing 
transition must 
have a mutually 
exclusive guard 
condition

21.6.2

Unpaid

FullyPaid PartiallyPaidOverPaid

[payment = balance]

[payment > balance] [payment < balance]

acceptPayment

acceptPayment

makeRefund

BankLoan

choice pseudo-state 



 © Clear View Training 2008 v2.5 14

Events
 "The specification of a noteworthy 

occurrence that has location in 
time and space"

 Events trigger transitions in state 
machines

 Events can be shown externally, 
on transitions, or internally within 
states (internal transitions)

 There are four types of event:
 Call event
 Signal event
 Change event
 Time event

Off

On

turnOff turnOn

event

21.7



 © Clear View Training 2008 v2.5 15

close()

Call event
 A call for an operation 

executon
 The event should have 

the same signature as 
an operation of the 
context class

 A sequence of actions 
may be specified for a 
call event - they may 
use attributes and 
operations of the 
context class

 The return value must 
match the return type 
of the operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance 
- m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m) 
[balance < m]

withdraw(m) 
[balance >= m]

internal call event action

condition
external call event

entry action

SimpleBankAccount

21.7.1



 © Clear View Training 2008 v2.5 16

close()

Signal events
 A signal is a 

package of 
information that 
is sent 
asynchronously 
between objects
 the attributes 

carry the 
information

 no operations

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance 
- m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m) 
[balance < m]

withdraw(m) 
[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date
accountNumber : long
amountOverdrawn : double

21.7.2



 © Clear View Training 2008 v2.5 17

Receiving a signal

 You may show a 
signal receipt on 
a transition 
using a concave 
pentagon or as 
an internal 
transition state 
using standard 
notation

Calling borrowerOverdrawnAccount

signal receipt

SignalName : someAction

Some state

21.7.2



 © Clear View Training 2008 v2.5 18

close()

Change events
 The action is performed 

when the Boolean 
expression transitions 
from false to true

 The event is edge 
triggered on a false to 
true transition

 The values in the 
Boolean expression 
must be constants, 
globals or attributes of 
the context class 

 A change event implies 
continually testing the 
condition whilst in the 
state

InCredit

deposit(m)/ balance = balance + m
balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance 
- m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m) 
[balance < m]

withdraw(m) 
[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean
expression

21.7.3



 © Clear View Training 2008 v2.5 19

Time events
 Time events occur when 

a time expression 
becomes true

 There are two keywords, 
after and when

 Elapsed time:
 after( 3 months )

 Absolute time:
 when( date =20/3/2000)

Overdrawn

balance < overdraftLimit / 
notifyManager

Frozen

after( 3 months )

Context: CreditAccount 
class

21.7.4



 © Clear View Training 2008 v2.5 20

Summary

 We have looked at:
 Behavioral state machines
 Protocol state machines
 States

 Actions
 Exit and entry actions

 Activities
 Transitions

 Guard conditions
 Actions

 Events
 Call, signal, change and time

21.8



 © Clear View Training 2008 v2.5 21

Design - advanced state 
machines



 © Clear View Training 2008 v2.5 22

Composite states
 Have one or more regions that 

each contain a nested 
submachine
 Simple composite state

 exactly one region
 Orthogonal composite state

 two or more regions

 The final state terminates its 
enclosing region – all other 
regions continue to execute

 The terminate pseudo-state 
terminates the whole state 
machine

 Use the composition icon when 
the submachines are hidden

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate
pseudo-state

A composite state
composition icon

22.2



 © Clear View Training 2008 v2.5 23

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier[carrier]

cancel

Simple composite states

 Contain
s a 
single 
region

do/ dialISP

DialingISP
entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry 
pseudo
state

notConnected

dial

connected
exit pseudo-state

NotConnected Connected

entry/ onHook exit/ onHook
do/ useConnection

ISPDialer

22.2.1



 © Clear View Training 2008 v2.5 24

Orthogonal composite 
states

 Has two or more regions
 When we enter the superstate, both submachines start 

executing concurrently - this is an implicit fork

do/ 
initializeSecuritySensor

Initializing

InitializingFireSensors
do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ 
monitorSecuritySensor

Monitoring

MonitoringFireSensors
do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate 
when both regions have terminated 

Unsynchronized exit - exit the superstate when 
either region terminates. The other region 
continues 

22.2.2



 © Clear View Training 2008 v2.5 25

Submachine states
 If we want to refer 

to this state 
machine in other 
state machines, 
without cluttering 
the diagrams, then 
we must use a 
submachine state

 Submachine states 
reference another 
state machine

 Submachine states 
are semantically 
equivalent to 
composite states

LoggingIn

GettingDetails

do:getUsernam
e
do:getPassword

Verifying

do:getUsernam
e
do:getPassword

cancel

[badUsername]

[badPassword]

VerifyingUser

verified

cancelled

badUsername

badPassword

getDetails

verifyDetails

22.3



 © Clear View Training 2008 v2.5 26

Submachine state syntax
 A 

submachine 
state is 
equivalent to 
including a 
copy of the 
submachine 
in place of 
the 
submachine 
state

verificationFailed

Verifing:VerifyingUser

CheckingOut

verified

cancelled

badUsername

badPassword

getDetails verifyDetails

CancellingCheckout

AcceptingPayment

DisplayingError

AssessCustomer

[noDetails] [details]

succeeded

cancelled

checkOut

submachine state

paymentFailed

[ok]

[!ok]

22.3



 © Clear View Training 2008 v2.5 27

Submachine 
communication

 We often need two submachines to communicate
 Synchronous communication can be achieved by a join
 Asynchronous communication is achieved by one 

submachine setting a flag for another one to process in its 
own time.
 Use attributes of the context object as flags

OrderProcessing

AcceptingPayment

do/acceptPayment

AssemblingOrder

do/assemble order

PaidFor

entry/paidFor = true

DeliveringOrder[paidFor]

Submachine communication 
using the attribute PaidFor 
as a flag: The upper 
submachine sets the flag and 
the lower submachine uses it 
in a guard condition

22.4



 © Clear View Training 2008 v2.5 28

Summary

 We have explored advanced aspects of 
state machines including:
 Simple composite states
 Orthogonal composite states
 Submachine communication

 Attribute values
 Submachine states

22.6


	Design - state machines
	State machines
	State machine diagrams
	Light bulb turnOn
	Light bulb On
	Light bulb turnOff
	Light bulb Off
	Basic state machine syntax
	States
	State syntax
	Transitions
	Connecting - the junction pseudo state
	Branching – the choice pseudo state
	Events
	Call event
	Signal events
	Receiving a signal
	Change events
	Time events
	Slide 20
	Design - advanced state machines
	Composite states
	Simple composite states
	Orthogonal composite states
	Submachine states
	Submachine state syntax
	Submachine communication
	Slide 28

