
 © Clear View Training 2008 v2.5 1

OO Analysis and Design
with UML 2 and UP

Dr. Jim Arlow,
Zuhlke Engineering Limited

 © Clear View Training 2008 v2.5 2

Analysis - packages

 © Clear View Training 2008 v2.5 3

Analysis packages
 A package is a general purpose mechanism for organising model

elements into groups
 Group semantically related elements
 Define a “semantic boundary” in the model
 Provide units for parallel working and configuration management
 Each package defines an encapsulated namespace i.e. all names must be

unique within the package
 In UML 2 a package is a purely logical grouping mechanism

 Use components for physical grouping
 Every model element is owned by exactly one package

 A hierarchy rooted in a top level package that can be stereotyped
«topLevel»

 Analysis packages contain:
 Use cases, analysis classes, use case realizations, analysis packages

11.2

 © Clear View Training 2008 v2.5 4

Package syntax

«framework»

«modelLibrary»

standard UML 2 package stereotypes

A package that contains model elements that specify a reusable architecture
A package that contains elements that are intended to be reused by other
packages
Analogous to a class library in Java, C# etc.

Membership

+ClubMembership
+Benefits
+MembershipRules
+MemberDetails:Member
-JoiningRules

Membership

Membership:MemberDetails

Membership

ClubMembership

MembershipRules

BenefitsJoiningRules

MemberDetails

Member

«access»

public
(exported)
elements

private
element

qualified
package
name

see later!

11.2

 © Clear View Training 2008 v2.5 5

Nested packages
 If an element is visible

within a package then it is
visible within all nested
packages
 e.g. Benefits is visible

within MemberDetails
 Show containment using

nesting or the
containment relationship

 Use «access» or «import»
to merge the namespace
of nested packages with
the parent namespace

Membership

ClubMembership

MembershipRules

Benefits

JoiningRules

MemberDetails

Member

«import»

containment relationship

anchor icon

Membership

ClubMembership

MembershipRules

BenefitsJoiningRules

MemberDetails

Member

«import»

11.4

 © Clear View Training 2008 v2.5 6

Package dependencies

Supplier
«use»

Client

Supplier
«import»

Client

Supplier
«access»

Client

Public elements of the supplier namespace are added as
private elements to the client namespace. Not transitive.

Public elements of the supplier namespace are added as
public elements to the client namespace. Transitive.

An element in the client uses an element in the supplier
in some way. The client depends on the supplier.
Transitive.

«trace» usually represents an historical development of
one element into another more refined version. It is an
extra-model relationship. Transitive.

Analysis
Model

«trace» Design
Model

Supplier
«merge»

Client

The client package merges the public contents of its
supplier packages. This is a complex relationship only
used for metamodeling - you can ignore it.

dependency semantics

C B A

transitivity - if dependencies x and y are
transitive, there is an implicit dependency
between A and C

y x

not transitive

11.5

 © Clear View Training 2008 v2.5 7

Package generalisation
 The more specialised child

packages inherit the public and
protected elements in their parent
package

 Child packages may override
elements in the parent package.
Both Hotels and CarHire packages
override Product::Item

 Child packages may add new
elements. Hotels adds Hotel and
RoomType, CarHire adds Car

+Price
+Market
+Item
-MicroMarket

Product

+Product::Price
+Product::Market
+Item
+Hotel
+RoomType

Hotels
+Product::Price
+Product::Market
+Item
+Car

CarHire

children

parent

11.6

 © Clear View Training 2008 v2.5 8

Architectural analysis

 This involves organising the analysis classes into a set of cohesive packages
 The architecture should be layered and partitioned to separate concerns

 It’s useful to layer analysis models into application specific and application general layers
 Coupling between packages should be minimised
 Each package should have the minimum number of public or protected elements

Products

Inventory
Management

Sales

Account
Management

application
specific layer

application
general
layer

partitions

11.7

 © Clear View Training 2008 v2.5 9

Finding analysis packages
 These are often discovered as the model matures
 We can use the natural groupings in the use case

model to help identify analysis packages:
 One or more use cases that support a particular business

process or actor
 Related use cases

 Analysis classes that realise these groupings will often
be part of the same analysis package

 Be careful, as it is common for use cases to cut across
analysis packages!
 One class may realise several use cases that are allocated to

different packages

11.7.1

 © Clear View Training 2008 v2.5 10

Analysis packages:
guidelines

 A cohesive group of closely related classes or a class hierarchy and
supporting classes

 Minimise dependencies between packages
 Localise business processes in packages where possible
 Minimise nesting of packages
 Don’t worry about dependency stereotypes
 Don’t worry about package generalisation
 Refine package structure as analysis progresses
 4 to 10 classes per package
 Avoid cyclic dependencies!

A merge splitA B A B
C

11.7.2

 © Clear View Training 2008 v2.5 11

Summary

 Packages are the UML way of grouping
modeling elements

 There are dependency and generalisation
relationships between packages

 The package structure of the analysis
model defines the logical system
architecture

11.8

 © Clear View Training 2008 v2.5 12

Analysis - use case
realization

 © Clear View Training 2008 v2.5 13

Analyse a use case

Use case
engineer

Analyse a
use case

Architecture
description

Analysis class

Use case
realization

Use case model

Business model
[or domain model]

Requirements
model

12.2

 © Clear View Training 2008 v2.5 14

What are use case
realizations?

 Each use case has exactly one use case realization
 parts of the model that show how analysis classes collaborate

together to realise the behaviour specified by the use case
 they model how the use case is realised by the analysis classes

we have identified
 They are rarely modelled explicitly

 they form an implicit part of the backplane of the model
 they can be drawn as a stereotyped collaboration

Place Order
«trace» «use case realization»

Place Order
dependency

use case realizationuse case

12.3

 © Clear View Training 2008 v2.5 15

UC realization - elements
 Use case realizations consist of the following elements:

 Analysis class diagrams
 These show relationships between the analysis classes that interact

to realise the UC
 Interaction diagrams

 These show collaborations between specific objects that realise the
UC. They are “snapshots” of the running system

 Special requirements
 UC realization may well uncover new requirements specific to the

use case. These must be captured
 Use case refinement

 We may discover new information during realization that means
that we have to update the original UC

12.4

 © Clear View Training 2008 v2.5 16

Interactions
 Interactions are units of behavior of a context

classifier
 In use case realization, the context classifier is a

use case
 The interaction shows how the behavior specified by

the use case is realized by instances of classifiers
 Interaction diagrams capture an interaction as:

 Lifelines – participants in the interaction
 Messages – communications between lifelines

12.5

 © Clear View Training 2008 v2.5 17

Lifelines

 A lifeline represents a single participant in an interaction
 Shows how a classifier instance may participate in the interaction

 Lifelines have:
 name - the name used to refer to the lifeline in the interaction
 selector - a boolean condition that selects a specific instance
 type - the classifier that the lifeline represents an instance of

 They must be uniquely identifiable within an interaction by name, type or both
 The lifeline has the same icon as the classifier that it represents

 The lifeline jimsAccount represents an instance of the Account class
 The selector [id = "1234"] selects a specific Account instance with the id "1234"

jimsAccount [id = "1234"] : Account

name selector type

12.6

 © Clear View Training 2008 v2.5 18

Messages
 A message represents a communication between two lifelines

synchronous
message

asynchronous
send

message
return

sender receiver/
target

creation :A

type of
message

destruction

found
message

lost
message

calling an operation synchronously
the sender waits for the receiver to complete

calling an operation asynchronously, sending a signal
the sender does not wait for the receiver to complete

semantics

returning from a synchronous operation call
the receiver returns focus of control to the sender

the sender creates the target

the sender destroys the receiver

the message is sent from outside the scope of the interaction

the message fails to reach its destination

12.7

 © Clear View Training 2008 v2.5 19

Interaction diagrams
 Sequence diagrams

 Emphasize time-ordered sequence of message sends
 Show interactions arranged in a time sequence
 Are the richest and most expressive interaction diagram
 Do not show object relationships explicitly - these can be inferred from

message sends
 Communication diagrams

 Emphasize the structural relationships between lifelines
 Use communication diagrams to make object relationships explicit

 Interaction overview diagrams
 Show how complex behavior is realized by a set of simpler interactions

 Timing diagrams
 Emphasize the real-time aspects of an interaction

12.8

 © Clear View Training 2008 v2.5 20

Sequence diagram syntax

 All interaction diagrams may be prefixed sd to indicate their type
 You can generally infer diagram types from diagram syntax

 Activations indicate when a lifeline has focus of control - they are often omitted from
sequence diagrams

12.9

:Registrar
:RegistrationManager

uml:Course

addCourse("UML")

«create»

notes can
form
a "script"
describing the
flow

lifeline
sd AddCourse

object creation message

synchronous
message

object is
created at
this point

message
return

activation

The Registrar selects
"add course".

The system creates
the new Course.

 © Clear View Training 2008 v2.5 21

Deletion and self-
delegation

 Self delegation is when a lifeline sends a message to itself
 Generates a nested activation

 Object deletion is shown by terminating the lifeline's tail at the point of deletion
by a large X

:Registrar
:RegistrationManager uml:Course

deleteCourse("UML")

sd DeleteCourse

object is
deleted at
this point

«destroy»

self delegation

findCourse("UML")

nested activation

12.9

 © Clear View Training 2008 v2.5 22

State invariants and
constraints

12.9.4

:Customer

:Order

:DeliveryManager:OrderManager

«create»

unpaid

paid

delivered

raiseOrder()

acceptPayment()

acceptPayment()

deliver()

deliver()

state invariant

A

B

{B – A <= 28 days}

label

sd ProcessAnOrder

constraint

 © Clear View Training 2008 v2.5 23

Combined fragments

 Sequence diagrams may be divided into areas called combined fragments
 Combined fragments have one or more operands
 Operators determine how the operands are executed
 Guard conditions determine whether operands execute. Execution occurs

if the guard condition evaluates to true
 A single condition may apply to all operands OR
 Each operand may be protected by its own condition

name op

[guard condition 2]

b()

c() guard conditions must be placed
above the first event occurrence

:A :B :C

operator

operands

a()
combined fragment

12.10

[guard condition 1]

 © Clear View Training 2008 v2.5 24

Common operators

operato
r

long name semantics

opt Option There is a single operand that executes if the condition is true (like if …
then)

alt Alternative
s

The operand whose condition is true is executed. The keyword else may
be used in place of a Boolean expression (like select… case)

loop Loop This has a special syntax:
loop min, max [condition]
Iterate min times and then up to max times while condition is true

break Break The combined fragment is executed rather than the rest of the
enclosing interaction

ref Reference The combined fragment refers to another interaction

findStudent(name):Student
ref ref has a single operand that is a

reference to another interaction.

This is an interaction use.

12.10

 © Clear View Training 2008 v2.5 25

The rest of the operators
 These operators are less common

operator long
name

semantics

par parallel Both operands execute in parallel

seq weak
sequenci
ng

The operands execute in parallel subject to the constraint that event
occurrences on the same lifeline from different operands must happen in
the same sequence as the operands

strict strict
sequenci
ng

The operands execute in strict sequence

neg negative The combined fragment represents interactions that are invalid

critical critical
region

The interaction must execute atomically without interruption

ignore ignore Specifies that some message types are intentionally ignored in the
interaction

conside
r

consider Lists the message types that are considered in the interaction

assert assertion The operands of the combined fragments are the only valid continuations
of the interaction

12.10

 © Clear View Training 2008 v2.5 26

branching with opt and alt
 opt semantics:

 single operand that
executes if the
condition is true

 alt semantics:
 two or more operands

each protected by its
own condition

 an operand executes if
its condition is true

 use else to indicate
the operand that
executes if none of the
conditions are true

:A :B :C :D

opt [condition]

do this if condition is true

alt

do this if condition1 is true

[condition1]

[condition2]

do this if condition2 is true

[else]

do this if neither condition is true

sd example of opt and alt

12.10.1

 © Clear View Training 2008 v2.5 27

Iteration with loop and
break

 loop semantics:
 Loop min times, then loop (max – min)

times while condition is true
 loop syntax

 A loop without min, max or condition is an
infinite loop

 If only min is specified then max = min
 condition can be

 Boolean expression
 Plain text expression provided it is clear!

 Break specifies what happens when the
loop is broken out of:

 The break fragment executes
 The rest of the loop after the break does

not execute
 The break fragment is outside the loop

and so should overlap it as shown

:A :B

loop min, max [condition]

do something

sd examples of loop

loop [condition]

do something

loop while guard
condition is true

break on breaking out do this

do something else

must be global
relative to loop

12.10.2

 © Clear View Training 2008 v2.5 28

loop idioms

 To specify a forEach loop over a set of objects:
 use a for loop with an index (see later)
 use the idiom [for each object in ObjectType](e.g. [for each student in :Student])

type of loop semantics loop expression

infinite loop keep looping forever loop *

for i = 1 to n
 {body}

repeat (n) times loop n

while(booleanExpressio
n)
 {body}

repeat while booleanExpression is
true

loop [booleanExpression]

repeat
 {body}
while(booleanExpressio
n)

execute once then repeat while
booleanExpression is true

loop 1, * [booleanExpression]

forEach object in set
 {body}

Execute the loop once for each
object in a set

loop [for each object in
objectType]

12.10.2

 © Clear View Training 2008 v2.5 29

Communication diagram
syntax

 Communication diagrams emphasize the structural aspects of an interaction -
how lifelines connect together
 Compared to sequence diagrams they are semantically weak
 Object diagrams are a special case of communication diagrams

2: addCourse("MDA")

:Registrar

:RegistrationManager

mda:Course

uml:Course

1: addCourse("UML") 1.1: «create»

2.1: «create»

sd AddCourses

link

messagesequence number

lifeline

object
creation
message

12.11

 © Clear View Training 2008 v2.5 30

Iteration
 Iteration is shown

by using the
iteration specifier
(*), and an optional
iteration clause
 There is no

prescribed UML
syntax for iteration
clauses

 Use code or
pseudo code

 To show that
messages are sent
in parallel use the
parallel iteration
specifier, *//

iteration clause

1: printCourses()

:Registrar

:RegistrationManager

[i]:Course

1.1.1:
print()

1.1 * [for i = 1 to n] : printCourse(i)

sd PrintCourses

iteration specifier

12.11.1

 © Clear View Training 2008 v2.5 31

Branching

 Branching is modelled by prefixing the sequence number with a
guard condition
 There is no prescribed UML syntax for guard conditions!
 In the example above, we use the variable found. This is true if both

the student and the course are found, otherwise it is false

:RegistrationManager
1: register ("Jim", "UML")

:Registrar

course:Course

1.3 [found] : register(student)

1.1: student = findStudent("Jim")

1.4 [!found] : error()

1.2: course = findCourse("UML")

sd register student for course

It’s hard to
show

branching
clearly!!

found = (student != null) & (course != null)

guard condition

return value from message

12.11.2

 © Clear View Training 2008 v2.5 32

Summary
 In this section we have looked at use case realization

using interaction diagrams
 There are four types of interaction diagram:

 Sequence diagrams – emphasize time-ordered sequence of
message sends

 Communication diagrams – emphasize the structural relationships
between lifelines

 Interaction overview diagrams – show how complex behavior is
realized by a set of simpler interactions

 Timing diagrams – emphasize the real-time aspects of an
interaction

 We have looked at sequence diagrams and
communication diagrams in this section - we will look at
the other types of diagram later

12.12

	OO Analysis and Design with UML 2 and UP
	Analysis - packages
	Analysis packages
	Package syntax
	Nested packages
	Package dependencies
	Package generalisation
	Architectural analysis
	Finding analysis packages
	Analysis packages: guidelines
	Slide 11
	Analysis - use case realization
	Slide 13
	What are use case realizations?
	UC realization - elements
	Interactions
	Lifelines
	Messages
	Interaction diagrams
	Sequence diagram syntax
	Deletion and self-delegation
	State invariants and constraints
	Combined fragments
	Common operators
	The rest of the operators
	branching with opt and alt
	Iteration with loop and break
	loop idioms
	Communication diagram syntax
	Iteration
	Branching
	Slide 32

