
 © Clear View Training 2008 v2.5 1

Design - interfaces and 
components



 © Clear View Training 2008 v2.5 2

What is an interface?
 An interface specifies a named set of public features 
 It separates the specification of functionality from its implementation
 An interface defines a contract that all realizing classifiers must conform to:

Interface specifies Realizing classifier

operation Must have an operation with the same signature and semantics

attribute Must have public operations to set and get the value of the attribute. The 
realizing classifier is not required to actually have the attribute specified 
by the interface, but it must behave as though it has

association Must have an association to the target classifier. If an interface specifies 
an association to another interface, then the implementing classifiers of 
these interfaces must have an association between them

constraint Must support the constraint

stereotype Has the stereotype

tagged value Has the tagged value

protocol Realizes the protocol 

design by 
contract

19.3



 © Clear View Training 2008 v2.5 3

Provided interface syntax
 A provided interface indicates that a classifier implements the 

services defined in an interface

19.4

CDBook

Borrow

«interface»
Borrow

borrow()
return()
isOverdue()

CDBook

“Lollipop” style notation
(note: you can’t show the 
interface operations or attributes 
with this shorthand style of 
notation)

“Class” style 
notation

interface

realization
relationship



 © Clear View Training 2008 v2.5 4

Required interface syntax
 A required interface indicates that a classifier uses the 

services defined by the interface

Borrow

Library

required interface

Borrow

Library

«interface»
Borrow

Library

class style notation lollipop style notation

19.4



 © Clear View Training 2008 v2.5 5

Assembly connectors

 You can connect provided and required 
interfaces using an assembly connector

Borrow

Book CD

Library

1 1

0..* 0..*

assembly
connector

19.4



 © Clear View Training 2008 v2.5 6

Ports: organizing 
interfaces

 A port specifies an interaction point between a classifier and its environment
 A port is typed by its provided and required interfaces:

 It is a semantically cohesive set of provided and required interfaces
 It may have a name

 If a port has a single required interface, this defines the type of the port
 You can name the port portName:RequiredInterfaceName

DisplayMedium

Print, Display

Book

presentation

port Viewer

Book

presentation

19.6



 © Clear View Training 2008 v2.5 7

Interfaces and CBD
 Interfaces are the key to component based 

development (CBD)
 This is constructing software from replaceable, plug-in 

parts:
 Plug – the provided interface
 Socket – the required interface

 Consider:
 Electrical outlets
 Computer ports – USB, serial, parallel

 Interfaces define a contract so classifiers that realise 
the interface agree to abide by the contract and can be 
used interchangeably

19.7



 © Clear View Training 2008 v2.5 8

What is a component?
 The UML 2.0 specification states that, "A component 

represents a modular part of a system that encapsulates 
its contents and whose manifestation is replaceable 
within its environment"
 A black-box whose external behaviour is completely defined by 

its provided and required interfaces
 May be substituted for by other components provided they all 

support the same protocol 

 Components can be:
 Physical - can be directly instantiated at run-time e.g. an 

Enterprise JavaBean (EJB)
 Logical -  a purely logical construct e.g. a subsystem

  only instantiated indirectly by virtue of its parts being instantiated

19.8



 © Clear View Training 2008 v2.5 9

«delegate»

Component syntax
 Components may have provided and required interfaces, 

ports, internal structure
 Provided and required interfaces usually delegate to internal parts
 You can show the parts nested inside the component icon or 

externally, connected to it by dependency relationships

«component»

AI1 I2

provided 
interface

required 
interface

component
«component»

A

B C

I1

I1

I2

I2

part

«delegate»

black box notation white box notation

19.8



 © Clear View Training 2008 v2.5 10

Subsystems
 A subsystem is a component that 

acts as a unit of decomposition 
for a larger system

 It is a logical construct used to 
decompose a larger system into 
manageable chunks

 Subsystems can't be instantiated 
at run-time, but their contents 
can

 Interfaces connect subsystems 
together to create a system 
architecture

BusinessLogic

GUI

Customer
Manager

Account
Manager

Order
Manager

«subsystem»

«subsystem»

19.10



 © Clear View Training 2008 v2.5 11

Example layered 
architecture

«subsystem»
GUI

«subsystem»
Customer

«subsystem»
Order

«subsystem»
Product

«subsystem»
Accounts

«subsystem»
java.sql

«subsystem»
{global}
java.util

«subsystem»
javax.swing

Customer
Manager

Product
Manager

OrderManager

Account
Manager

services

domain

utility

business
logic

presentation

19.12.2



 © Clear View Training 2008 v2.5 12

Using interfaces
 Advantages:

 When we design with classes, we are designing to specific 
implementations

 When we design with interfaces, we are instead designing to 
contracts which may be realised by many different implementations 
(classes)

 Designing to contracts frees our model from implementation 
dependencies and thereby increases its flexibility and extensibility

 Disadvantages:
 Interfaces can add flexibility to systems BUT flexibility may lead to 

complexity
 Too many interfaces can make a system too flexible!
 Too many interfaces can make a system hard to understand

Keep it simple!

19.13



 © Clear View Training 2008 v2.5 13

Summary
 Interfaces specify a named set of public features:

 They define a contract that classes and subsystems 
may realise

 Programming to interfaces rather than to classes 
reduces dependencies between the classes and 
subsystems in our model

 Programming to interfaces increases flexibility and 
extensibility

 Design subsystems and interfaces allow us to:
 Componentize our system
 Define an architecture

19.14



 © Clear View Training 2008 v2.5 14

Design - use case 
realization



 © Clear View Training 2008 v2.5 15

Use case realization - 
design

 A collaboration of Design objects and 
classes that realise a use case

 A Design use case realization contains
 Design object interaction diagrams
 Links to class diagrams containing the 

participating Design classes
 An explanatory text (flow)

 There is a trace between an Analysis use 
case realization and a Design use case 
realization

 The Design use case realization specifies 
implementation decisions and implements 
the non-functional requirements

same as in 
Analysis, but now 
including 
implementation 
details

20.3



 © Clear View Training 2008 v2.5 16

Interaction diagrams in 
design

 We only produce a design interaction diagram 
where it adds value to the project:
 A refinement of the analysis interaction diagrams to 

illustrate design issues
 New diagrams to illustrate technical issues
 New diagrams to illustrate central mechanisms

 In design:
 Sequence diagrams are used more than 

communication diagrams
 Timing diagrams may be used to capture timing 

constraints

20.4



 © Clear View Training 2008 v2.5 17

addCourse( "UML" )

uml = Course("UML")

addCourse( "UML" )

Sequence diagrams in 
design

:Registrar
:RegistrationUI

uml:Course

sd AddCourse - design

:RegistrationManager :DBManager

save(uml)

20.4



 © Clear View Training 2008 v2.5 18

active class

Concurrency – active 
classes

 Active classes are classes whose 
instances are active objects
 Active objects have concurrent 

threads of control
 You can show concurrency on 

sequence diagrams by giving 
each thread of execution a name 
and appending this name to the 
messages (see next slide)

class diagram security system

ControlBox Siren

SecuritySensorMonitor FireSensorMonitor

SecuritySensor FireSensor

11

1

1 1

1 1

0..*0..*

20.5



 © Clear View Training 2008 v2.5 19

Concurrency with par

opt [!fire]

:Security Guard
:ControlBox

:FireSensor
Monitor

:SecuritySensor
Monitor

activate()

monitor()

:FireSensor
:Security
Sensor

:Siren

soundFireAlarm()

par

monitor()

intruder = 
isTriggered()

loop 1, * [(!intruder) & (!fire)]

fire = isTriggered()loop 1, * [!fire]

fire()

intruder()

sd ActivateAll

soundIntruderAlarm()

critical

soundActivatedAlarm()

20.5.2



 © Clear View Training 2008 v2.5 20

1.1.1 A * [!fire] : 
fire = isTriggered()

1.1 A : monitor() 1.1 B : monitor()

1.1.1 B *[(!intruder) & (!fire)] 
: 

intruder = isTriggered()

1.2 B : 
intruder()

1.2 A : 
fire()

1.3 B : soundIntruderAlarm ()

Concurrency – active 
objects

 Each separate thread of execution is given its own name
 Messages labelled A execute concurrently to messages labelled B
 e.g. 1.1 A executes concurrently to 1.1 B

:FireSensorMonitor :SecuritySensorMonitor

:ControlBox
1: activate ()

:SecurityGuard

:SecuritySensor :FireSensor

:Siren

sd ActivateAll
1.3 A : soundFireAlarm ()

20.5.3



 © Clear View Training 2008 v2.5 21

Subsystem interactions
 Sometimes it’s useful to model a use case realization as a high-

level interaction between subsystems rather than between 
classes and interfaces
 Model the interactions of classes within each subsystem in separate 

interaction diagrams
 You can show interactions with subsystems on sequence 

diagrams
 You can show messages going to parts of the subsystem

Customer
«subsystem»

CustomerManage
r

:Sales Agent

«subsystem»
:Customer

getCustomerDetails( cid )

customerDetails

:
CustomerManager

20.6



 © Clear View Training 2008 v2.5 22

{t <= 15} {t = 10}{t > 30}

{t <= 15} {t = 30}

Timing diagrams

 Emphasize the real-
time aspects of an 
interaction

 Used to model timing 
constraints

 Lifelines, their states 
or conditions are 
drawn vertically, time 
horizontally

 It's important to state 
the time units you use 
in the timing diagram

sd IntruderThenFire

soundingFireAlarm

soundingIntruderAlarm

off

:S
ir

e
n

0 10 20 30 40 50

state or 
condition

lifeline

intruder

intruder

fire

time in minutes

event

timing ruler

duration constraint

60

resting

70 80 90 100

sd IntruderThenFire

sounding
Intruder
Alarm:S

ir
e
n

off resting

sounding
Intruder
Alarm

sounding
fire Alarm

state or conditionall times in minutes

compact 
form

20.7



 © Clear View Training 2008 v2.5 23

{t <= 0.016}

{t <= 0.016}

soundIntruderAlarm()

soundIntruderAlarm()

soundIntruderAlarm()

soundIntruderAlarm()

soundFireAlarm()

Messages on timing 
diagrams

 You can 
show 
messages 
between 
lifelines on 
timing 
diagrams

 Each lifeline 
has its own 
partition

sd SirenBehavior

soundingIntruderAlarm

off: S
ir

e
n

{t <= 15}

triggered

notTriggered

: In
tr

u
d

e
rS

e
n

so
rM

o
n

it
o
r

{t <= 15}{t = 30}

all times in minutes

resting

triggered

notTriggered

: Fi
re

S
e
n

so
r M

o
n

i
to

r

soundingFireAlarm

messages

20.7



 © Clear View Training 2008 v2.5 24

Summary

 We have looked at:
 Design sequence diagrams
 Subsystem interactions
 Timing diagrams

20.9



 © Clear View Training 2008 v2.5 25

Summary

 We have explored advanced aspects of 
state machines including:
 Simple composite states
 Orthogonal composite states
 Submachine communication

 Attribute values
 Submachine states

22.6


	Design - interfaces and components
	What is an interface?
	Provided interface syntax
	Required interface syntax
	Assembly connectors
	Ports: organizing interfaces
	Interfaces and CBD
	What is a component?
	Component syntax
	Subsystems
	Example layered architecture
	Using interfaces
	Slide 13
	Design - use case realization
	Use case realization - design
	Interaction diagrams in design
	Sequence diagrams in design
	Concurrency – active classes
	Concurrency with par
	Concurrency – active objects
	Subsystem interactions
	Timing diagrams
	Messages on timing diagrams
	Slide 24
	Slide 25

