
 © Clear View Training 2008 v2.5 1

OO Analysis and Design
with UML 2 and UP

Dr. Jim Arlow,
Zuhlke Engineering Limited

 © Clear View Training 2008 v2.5 2

Design - introduction

 © Clear View Training 2008 v2.5 3

Design - purpose
 Decide how the

system's functions are
to be implemented

 Decide on strategic
design issues such as
persistence,
distribution etc.

 Create policies to deal
with tactical design
issues

Inception Elaboration Construction Transition

16.2

 © Clear View Training 2008 v2.5 4

Design artifacts -
metamodel

 Subsystems are
components that contain
UML elements

 We create the design
model from the analysis
model by adding
implementation details

 There is a historical
«trace» relationship
between the two models

Design Model

«subsystem»
c1

«subsystem»
c2

c3

I

Analysis Model

«trace»

conceptual
model

physical
model

16.3

 © Clear View Training 2008 v2.5 5

Artifact trace relationships

 Design model
 Design subsystem
 Design class
 Interface
 Use case realization

– design
 Deployment model

Analysis package

Analysis class

Use case realization
- analysis

Design subsystem

Design class

«interface»
Interface

Use case realization
- design

0..* 0..*

1

0..*

0..*
«trace»

«trace»

«trace»

16.3.1

 © Clear View Training 2008 v2.5 6

Should you maintain 2
models?

 A design model may contain 10 to 100 times as many
classes as the analysis model
 The analysis model helps us to see the big picture without

getting lost in implementation details
 We need to maintain 2 models if:

 It is a big system (>200 design classes)
 It has a long expected lifespan
 It is a strategic system
 We are outsourcing construction of the system

 We can make do with only a design model if:
 It is a small system
 It has a short lifespan
 It is not a strategic system

16.3.2

 © Clear View Training 2008 v2.5 7

Workflow - Design

Architectural design

Design a use case

Design a classComponent Engineer

Architect

Use Case Engineer

Design a subsystem

16.4

 © Clear View Training 2008 v2.5 8

Summary

 Design is the primary focus in the last part of the
elaboration phase and the first half of the
construction phase

 Purpose – to decide how the system's functions
are to be implemented

 artifacts:
 Design classes
 Interfaces
 Design subsystems
 Use case realizations – design
 Deployment model

16.6

 © Clear View Training 2008 v2.5 9

Design - classes

 © Clear View Training 2008 v2.5 10

What are design classes?
 Design classes are classes whose specifications have been

completed to such a degree that they can be implemented
 Specifies an actual piece of code

 Design classes arise from analysis classes:
 Remember - analysis classes arise from a consideration of the

problem domain only
 A refinement of analysis classes to include implementation details
 One analysis class may become many design classes
 All attributes are completely specified including type, visibility and

default values
 Analysis operations become fully specified operations (methods) with

a return type and parameter list
 Design classes arise from the solution domain

 Utility classes – String, Date, Time etc.
 Middleware classes – database access, comms etc.
 GUI classes – Applet, Button etc.

17.3

 © Clear View Training 2008 v2.5 11

Sources of design classes

java.util

Problem
domain

Solution
domain

Analysis
classes

Design
classes

17.3

 © Clear View Training 2008 v2.5 12

Anatomy of a design class

 A design class must have:
 A complete set of operations

including parameter lists, return
types, visibility, exceptions, set
and get operations, constructors
and destructors

 A complete set of attributes
including types and default
values

BankAccount

-name:String
-number:String
-balance:double = 0

+BankAccount(name:String,
 number:String)
+deposit(m:double):void
+withdraw(m:double):boolean
+calculateInterest():double
+getName():String
+setName(n:String):void
+getAddress():String
+setAddress(a:String):void
+getBalance():double

BankAccount
name
number
balance

deposit()
withdraw()
calculateInterest()

analysis design

«trace»

constructor

17.4

 © Clear View Training 2008 v2.5 13

Well-formed design
classes

 Design classes must have the following
characteristics to be “well-formed”:
 Complete and sufficient
 Primitive
 High cohesion
 Low coupling

How do the users of your classes
see them?
Always look at your classes from
their point of view!

MyClass

17.5

 © Clear View Training 2008 v2.5 14

Completeness, sufficiency and
primitiveness

 Completeness:
 Users of the class will make assumptions from the class name about

the set of operations that it should make available
 For example, a BankAccount class that provides a withdraw()

operation will be expected to also provide a deposit() operation!
 Sufficiency:

 A class should never surprise a user – it should contain exactly the
expected set of features, no more and no less

 Primitiveness:
 Operations should be designed to offer a single primitive, atomic

service
 A class should never offer multiple ways of doing the same thing:

 This is confusing to users of the class, leads to maintenance burdens and
can create consistency problems

 For example, a BankAccount class has a primitive operation to make
a single deposit. It should not have an operation that makes two or
more deposits as we can achieve the same effect by repeated
application of the primitive operation

The public
members of a
class define a
"contract"
between the
class its clients

17.5.1 17.5.2

 © Clear View Training 2008 v2.5 15

High cohesion, low
coupling

 High cohesion:
 Each class should have a set of operations that

support the intent of the class, no more and no less
 Each class should model a single abstract concept
 If a class needs to have many responsibilities, then

some of these should be implemented by “helper”
classes. The class then delegates to its helpers

 Low coupling:
 A particular class should be associated with just

enough other classes to allow it to realise its
responsibilities

 Only associate classes if there is a true semantic link
between them

 Never form an association just to reuse a fragment of
code in another class!

 Use aggregation rather than inheritance (next slide)

HotelBean

CarBean

HotelCarBean

this example
comes from a real
system!
What’s wrong with
it?

17.5.3 17.5.4

 © Clear View Training 2008 v2.5 16

Aggregation vs.
inheritance

 Inheritance gives you
fixed relationships
between classes and
objects

 You can’t change the class
of an object at runtime

 There is a fundamental
semantic error here. Is an
Employee just their job or
does an Employee have a
job?

Employee

Manager Programmer

john:Programmer

«instantiate»

1. How can we promote john?

2. Can john have more than one
job?

17.6

 © Clear View Training 2008 v2.5 17

A better solution…
 Using

aggregation we
get the correct
semantics:
 An Employee

has a Job
 With this more

flexible model,
Employees can
have more than
one Job

just change this link at
runtime to promote
john!

Job

Manager Programmer

john:Employee

Employee

:Programmer

«instantiate»

:Manager

«instantiate»

«instantiate»

0..*0..*

17.6.1

 © Clear View Training 2008 v2.5 18

Multiple inheritance
 Sometimes a class may have

more than one superclass
 The "is kind of" and

substitutability principles must
apply for all of the
classifications

 Multiple inheritance is
sometimes the most elegant
way of modelling something.
However:
 Not all languages support it

(e.g. Java)
 It can always be replaced by

single inheritance and delegation

Alarm

AutoDialler

Dialler

IActivate

in this example the
AutoDialler sounds an alarm
and rings the police when
triggered - it is logically both
a kind of Alarm and a kind of
Dialler

17.6.2

 © Clear View Training 2008 v2.5 19

Inheritance vs. interface
realization

 With inheritance we get two things:
 Interface – the public operations of the base classes
 Implementation – the attributes, relationships, protected

and private operations of the base classes
 With interface realization we get exactly one thing:

 An interface – a set of public operations, attributes and
relationships that have no implementation

Use inheritance when we want to inherit implementation.
Use interface realization when we want to define a contract.

17.6.3

 © Clear View Training 2008 v2.5 20

Templates
 Up to now, we have had to specify the types of all

attributes, method returns and parameters.
However, this can be a barrier to reuse

 Consider:

BoundedIntArray

size:int
elements[]:int

addElement(e:int):void
getElement(i:int):int

BoundedFloatArray

size:int
elements[]:float

addElement(e:float):void
getElement(i:int):float

BoundedStringArray

size:int
elements[]:String

addElement(e:String):void
getElement(i:int):String

spot the difference!

etc.

17.7

 © Clear View Training 2008 v2.5 21

Template syntax

 Template instantiation - the template parameters
are bound to actual values to create new classes
based on the template:

 If the type of a parameter is not specified then the
parameter defaults to being a classifier

 Parameter names are local to the template – two
templates do not have relationship to each other
just because they use the same parameter names!

 Explicit binding is preferred as it allows named
instantiations

BoundedArray

elements[size]:T

addElement(e:T):void
getElement(i:int):T

T, size:int=10

StringArray

elements[10]:String

addElement(e:String):void
getElement(i:int):String

IntArray

elements[100]:int

addElement(e:int):void
getElement(i:int):int

«bind»<T->String>

«bind»<T->int, size->100>

template parameters
template

explicit binding
(the instantiation is named)

default value

BoundedArray<T->float, size->10>

implicit binding
(the instantiation is anonymous)

elements[10]:float

addElement(e:float):void
getElement(i:int):float

17.7

 © Clear View Training 2008 v2.5 22

Templates & multiple inheritance

 Templates and multiple inheritance
should only be used in design models
where those features are available in the
target language:

language templates multiple
inheritance

C# Yes No

Java Yes No

C++ Yes Yes

Smalltalk No No

Visual Basic No No

Python No Yes

 © Clear View Training 2008 v2.5 23

Summary
 Design classes come from:

 A refinement of analysis classes (i.e. the business domain)
 From the solution domain

 Design classes must be well-formed:
 Complete and sufficient
 Primitive operations
 High cohesion
 Low coupling

 Don’t overuse inheritance
 Use inheritance for "is kind of"
 Use aggregation for "is role played by"
 Multiple inheritance should be used sparingly (mixins)
 Use interfaces rather than inheritance to define contracts

 Use templates and nested classes only where the target language
supports them

17.9

 © Clear View Training 2008 v2.5 24

Design - refining analysis
relationships

 © Clear View Training 2008 v2.5 25

Design relationships
 Refining analysis associations to design

associations involves several procedures:
 refining associations to aggregation or composition

relationships where appropriate
 implementing one-to-many associations
 implementing many-to-one associations
 implementing many-to-many associations
 implementing bidirectional associations
 implementing association classes

 All design associations must have:
 navigability
 multiplicity on both ends

18.2

 © Clear View Training 2008 v2.5 26

Aggregation and
composition

 In analysis, we often use unrefined associations. In design, these can become
aggregation or composition relationships

 We must also add navigability, multiplicity and role names

A B

A B A B

«trace» «trace»

{xor}

Analysis

Design

aggregatio
n

compositio
n

18.3

 © Clear View Training 2008 v2.5 27

Aggregation and
composition

Some objects are strongly
related like a tree and
its leaves

Some objects are
weakly
related like a computer
and
its peripherals

Aggregatio
n

Composition

UML defines two types of association:

18.3

 © Clear View Training 2008 v2.5 28

Aggregation semantics

 The aggregate can sometimes exist independently of the parts,
sometimes not

 The parts can exist independently of the aggregate
 The aggregate is in some way incomplete if some of the parts are

missing
 It is possible to have shared ownership of the parts by several

aggregates

Computer Printer
0..1 0..*

whole or
aggregate

part

aggregation is a whole–part relationship
A Computer may be attached to 0 or
more Printers

At any one point in time a Printer is
connected to 0 or 1 Computer

Over time, many Computers may use a
given Printer

The Printer exists even if there are no
Computers

The Printer is independent of the
Computer

aggregation

18.4

 © Clear View Training 2008 v2.5 29

Transitive and asymmetric

A B C

Aggregation (and composition) are transitive
If C is a part of B and B is a part of A, then C is a part of A

Product

*

*
Aggregation (and composition) are asymmetric
An object can never be part of itself!

a:Product

b:Product c:Product

d:Product

cycles
are

NOT
allowed

reflexive
aggregation

18.4

 © Clear View Training 2008 v2.5 30

1..*

Aggregation hierarchy

HomeComputer

CPU

RAM HardDriveFloppyDrive CDRom SoundCard GraphicsCard

* 1 1 1

Monitor SpeakerKeyboardMouse

1 1 1 1 2

1

connectedTo

1
1

connectedTo1

2

18.4

 © Clear View Training 2008 v2.5 31

Composition semantics

 The parts belong to exactly 0 or 1 whole at a time
 The composite has sole responsibility for the disposition of all its parts.

This means responsibility for their creation and destruction
 The composite may also release parts provided responsibility for them is

assumed by another object
 If the composite is destroyed, it must either destroy all its parts, OR give

responsibility for them over to some other object
 Composition is transitive and asymmetric

Mouse Button
1 1..4

composition is a strong form of aggregation

composite part
composition

always 0..1 or 1

The buttons have no
independent existence. If we
destroy the mouse, we destroy
the buttons. They are an integral
part of the mouse

Each button can belong to
exactly 1 mouse

18.5

 © Clear View Training 2008 v2.5 32

Composition and
attributes

 Attributes are in effect composition
relationships between a class and the
classes of its attributes

 Attributes should be reserved for
primitive data types (int, String, Date
etc.) and not references to other classes

18.5.1

 © Clear View Training 2008 v2.5 33

1 to 1 and many to 1
associations

 Many-to-one relationships in
analysis imply shared
ownership and are refined to
aggregations

 One-to-one associations in
analysis usually imply single
ownership and usually refine
to compositions

A B
1 1

A B
1 1

«trace»

roleName

1 to 1

A B
* 1

A B
* 1

«trace»

roleName

many to 1

analysis

design

18.7 18.8

 © Clear View Training 2008 v2.5 34

1 to many associations
 To refine 1-to-many associations we

introduce a collection class
 Collection classes instances store a

collection of object references to
objects of the target class

 A collection class always has methods
for:
 Adding an object to the collection
 Removing an object from the collection
 Retrieving a reference to an object in the

collection
 Traversing the collection

 Collection classes are typically supplied
in libraries that come as part of the
implementation language

 In Java we find collection classes in the
java.util library

A B1 *

A B

1 *

Vector
1 1

«trace»

sourc
e

target

18.9

 © Clear View Training 2008 v2.5 35

Collection semantics

 You can specify collection semantics by using
association end properties:

property pair

{unordered, nonunique}

{unordered, unique}

{ordered, unique}

{ordered, nonunique}

Bag

Set (default)

OrderedSet

Sequence

OCL collection

property

{ordered}

{unordered}

{unique}

{nonunique}

Elements in the collection are maintained in a strict order

There is no ordering of the elements in the collection

Elements in the collection are all unique an object appears in the collection once

Duplicate elements are allowed in the collection

semantics

A B
1 *

{ordered, unique}

18.10

 © Clear View Training 2008 v2.5 36

The Map
 Maps (also known as dictionaries)

have no equivalent in OCL
 Maps usually work by maintaining

a set of nodes
 Each node points to two objects –

the "key" and the "value"
 Maps are optimised to find a value

given a specific key
 They are a bit like a database

table with only two columns, one
of which is the primary key

 They are incredibly useful for
storing any objects that must be
accessed quickly using a key, for
example customer details or
products

m:HashMap

node1
value1

node2
value2

node3
value3

key3

key2

key1

A B
1 *

{map}

you can indicate the type of collection
using a constraint

18.10.1

 © Clear View Training 2008 v2.5 37

Many to many
associations

 There is no commonly used
OO language that directly
supports many-to-many
associations

 We must reify such
associations into design
classes

 Again, we must decide which
side of the association should
have primacy and use
composition, aggregation and
navigability accordingly

Task Resource* *

AllocationTask Resource
1*1 *

«trace»

this side has primacy

18.11.1

 © Clear View Training 2008 v2.5 38

Bi-directional associations
 There is no commonly used

OO language that directly
supports bi-directional
associations

 We must resolve each bi-
directional associations into
two unidirectional associations

 Again, we must decide which
side of the association should
have primacy and use
composition, aggregation and
navigability accordingly

A B1 *

A B

1 *

1 *

«trace»

this side has primacy

18.11.2

 © Clear View Training 2008 v2.5 39

Association classes
 There is no commonly

used OO language that
directly supports
association classes

 Refine all association
classes into a design
class

 Decide which side of
the association has
primacy and use
composition,
aggregation and
navigability accordingly

Company Person* *

Job
salary:double

Company Person
Job

salary:double

** 11

«trace»

{each Person can only have
one job with a given
Company}

this side
has primacy

18.11.3

 © Clear View Training 2008 v2.5 40

Summary
 In this section we have seen how we take the incompletely specified

associations in an analysis model and refine them to:
 Aggregation

 Whole-part relationship
 Parts are independent of the whole
 Parts may be shared between wholes
 The whole is incomplete in some way without the parts

 Composition
 A strong form of aggregation
 Parts are entirely dependent on the whole
 Parts may not be shared
 The whole is incomplete without the parts

 One-to-many, many-to-many, bi-directional associations and
association classes are refined in design

18.13

	OO Analysis and Design with UML 2 and UP
	Design - introduction
	Design - purpose
	Design artifacts - metamodel
	Artifact trace relationships
	Should you maintain 2 models?
	Workflow - Design
	Slide 8
	Design - classes
	What are design classes?
	Sources of design classes
	Anatomy of a design class
	Well-formed design classes
	Completeness, sufficiency and primitiveness
	High cohesion, low coupling
	Aggregation vs. inheritance
	A better solution…
	Multiple inheritance
	Inheritance vs. interface realization
	Templates
	Template syntax
	Templates & multiple inheritance
	Slide 23
	Design - refining analysis relationships
	Design relationships
	Aggregation and composition
	Slide 27
	Aggregation semantics
	Transitive and asymmetric
	Aggregation hierarchy
	Composition semantics
	Composition and attributes
	1 to 1 and many to 1 associations
	1 to many associations
	Collection semantics
	The Map
	Many to many associations
	Bi-directional associations
	Slide 39
	Slide 40

