
 © Clear View Training 2008 v2.5 1

OO Analysis and Design
with UML 2 and UP

Dr. Jim Arlow,
Zuhlke Engineering Limited

 © Clear View Training 2008 v2.5 2

Analysis - finding analysis
classes

 © Clear View Training 2008 v2.5 3

Analyse a use case

8.2

Use case
engineer

Analyse a
use case

Architecture
description

Analysis class

Use case
realization

Use case model

Business model
[or domain model]

Requirements
model

 © Clear View Training 2008 v2.5 4

What are Analysis classes?
 Analysis classes represent a crisp

abstraction in the problem domain
 They may ultimately be refined

into one or more design classes
 All classes in the Analysis model

should be Analysis classes
 Analysis classes have:

 A very “high level” set of
attributes. They indicate the
attributes that the design classes
might have.

 Operations that specify at a high
level the key services that the
class must offer. In Design, they
will become actual, implementable,
operations.

 Analysis classes must map onto
real-world business concepts

BankAccount

name : String
address
balance : double

deposit()
withdraw()
calculateInterest()

class name

attributes

operations

8.3

We always
specify

attribute
types if we
know what
they are!

 © Clear View Training 2008 v2.5 5

What makes a good analysis
class?

 Its name reflects its intent
 It is a crisp abstraction that models one specific element of the problem domain

 It maps onto a clearly identifiable feature of the problem domain
 It has high cohesion

 Cohesion is the degree to which a class models a single abstraction
 Cohesion is the degree to which the responsibilities of the class are semantically

related
 It has low coupling

 Coupling is the degree to which one class depends on others
 Rules of thumb:

 3 to 5 responsibilities per class
 Each class collaborates with others
 Beware many very small classes
 Beware few but very large classes
 Beware of “functoids”
 Beware of “omnipotent” classes
 Avoid deep inheritance trees

A responsibility is a
contract or obligation
of a class - it resolves
into operations and
attributes

8.3.2

 © Clear View Training 2008 v2.5 6

Finding classes
 Perform noun/verb analysis on documents:

 Nouns are candidate classes
 Verbs are candidate responsibilities

 Perform CRC card analysis
 A brainstorming technique using sticky notes
 Useful for brainstorming, Joint Application Development (JAD)

and Rapid Application development (RAD)

 With both techniques, beware of spurious classes:
 Look for synonyms - different words that mean the same
 Look for homonyms - the same word meaning different things

 Look for "hidden" classes!
 Classes that don't appear as nouns or as cards

8.4

 © Clear View Training 2008 v2.5 7

Noun/verb analysis
procedure

 Collect all of the relevant documentation
 Requirements document
 Use cases
 Project Glossary
 Anything else!

 Make a list of nouns and noun phrases
 These are candidate classes or attributes

 Make a list of verbs and verb phrases
 These are candidate responsibilities

 Tentatively assign attributes and
responsibilities to classes

8.4.1

 © Clear View Training 2008 v2.5 8

CRC card procedure

 Class, Responsibilities and Collaborators
 Separate information collection from information analysis

 Part 1: Brainstorm
 All ideas are good ideas in CRC analysis
 Never argue about something – write it down and analyse it later!

 Part 2: Analyse information - consolidate with noun/verb

 Responsibilities:

Class Name: BankAccount

Collaborators:

 Maintain balance Bank
things
the class
does

things the
class works
with

8.4.2

 © Clear View Training 2008 v2.5 9

Other sources of classes

 Physical objects
 Paperwork, forms etc.

 Be careful with this one – if the existing
business process is very poor, then the
paperwork that supports it might be irrelevant

 Known interfaces to the outside world
 Conceptual entities that form a cohesive

abstraction e.g. LoyaltyProgramme

8.4.4

 © Clear View Training 2008 v2.5 10

Summary

 We’ve looked at what constitutes a well-
formed analysis class

 We have looked at two analysis
techniques for finding analysis classes:
 Noun verb analysis of use cases,

requirements, glossary and other relevant
documentation

 CRC analysis

8.6

 © Clear View Training 2008 v2.5 11

Analysis - relationships

 © Clear View Training 2008 v2.5 12

What is a relationship?

 A relationship is a connection between
modelling elements

 In this section we’ll look at:
 Links between objects
 Associations between classes

 aggregation
 composition
 association classes

9.2

 © Clear View Training 2008 v2.5 13

What is a link?
 Links are connections between objects

 Think of a link as a telephone line connecting you and a
friend. You can send messages back and forth using this link

 Links are the way that objects communicate
 Objects send messages to each other via links
 Messages invoke operations

 OO programming languages implement links as object
references or pointers. These are unique handles that
refer to specific objects
 When an object has a reference to another object, we say

that there is a link between the objects

9.3

 © Clear View Training 2008 v2.5 14

Object diagrams

 Paths in UML
diagrams (lines to
you and me!) can
be drawn as
orthogonal, oblique
or curved lines

 We can combine
paths into a tree if
each path has the
same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique
path
style

orthogonal
path
style

preferred

object

9.3.1

 © Clear View Training 2008 v2.5 15

What is an association?

 Associations are relationships between classes
 Associations between classes indicate that

there are links between objects of those classes
 A link is an instantiation of an association just

as an object is an instantiation of a class

bookClub:Club jim:Personchairman

Club Person

«instantiate» «instantiate» «instantiate»

link

association

links
instantiate

associations

9.4

 © Clear View Training 2008 v2.5 16

Association syntax

 An association can have role names or an association name
 It’s bad style to have both!

 The black triangle indicates the direction in which the association name is
read:
 “A Company employs many Persons”

Company Person1 *

employs

navigability

association
name

multiplicity

Company Person
employer employee

1 *

role names

9.4.1

 © Clear View Training 2008 v2.5 17

Multiplicity

 Multiplicity is a constraint that
specifies the number of objects
that can participate in a
relationship at any point in time

 If multiplicity is not explicitly
stated in the model then it is
undecided – there is no default
multiplicity

Company Person
employee

1 *

employer

A Company employs many People

Each Person works for one Company

9.4.2

multiplicity syntax: minimum..maximum

0..1 zero or 1

1 exactly 1

0..* zero or more

* zero or more

1..* 1 or more

1..6 1 to 6

 © Clear View Training 2008 v2.5 18

Multiplicity exercise

 How many
 Employees can a Company have?
 Employers can a Person have?
 Owners can a BankAccount have?
 Operators can a BankAccount

have?
 BankAccounts can a Person have?
 BankAccounts can a Person

operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1owner

0..*

1..* operator

 © Clear View Training 2008 v2.5 19

Exercise
 Model a computer file system.

Here are the minimal facts you
need:
 The basic unit of storage is the file
 Files live in directories
 Directories can contain other

directories
 Use your own knowledge of a

specific file system (e.g. Windows
95 or UNIX) to build a model

Hint: a class can have an association to itself!

9.4.2.1

 © Clear View Training 2008 v2.5 20

Reflexive associations

Directory File
0..*10..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

9.4.2.1

 © Clear View Training 2008 v2.5 21

Hierarchies and networks

A
0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B
0..*

0..*

a1:B

b1:B
c1:B

d1:Be1:B

f1:B

g1:B

hierarchy network

an an association hierarchy, each
object has zero or one object
directly above it

in an association network, each
object has zero or many objects
directly above it

9.4.2.2

 © Clear View Training 2008 v2.5 22

Navigability
 Navigability indicates that it is

possible to traverse from an
object of the source class to
objects of the target class
 Objects of the source class may

reference objects of the target
class using the role name

 Even if there is no navigability it
might still be possible to traverse
the relationship via some indirect
means. However the
computational cost of the
traversal might be very high

Order Product* *

Not navigable
A Product object does not store a list of

Orders

An Order object stores a list of Products
Navigable

source target

navigability

A B

A B

A B

A B

A to B is navigable
B to A is navigable

A to B is navigable
B to A is not navigable

A to B is navigable
B to A is undefined

A to B is undefined
B to A is undefined

9.4.3

 © Clear View Training 2008 v2.5 23

Navigability - standard
practice

 Strict UML 2 navigability can clutter diagrams so the UML
standard suggests three possible modeling idioms:

1. Show navigability explicitly on diagrams with crosses and arrows
2. Omit all navigability from diagrams
3. Omit crosses from diagrams

 bi-directional associations have no arrows
 unidirectional associations have a single arrow
 you can't show associations that are not navigable in either

direction (not useful anyway!)

A B

A B

A to B is navigable
B to A is not navigable

A to B is navigable
B to A is navigable

standard
practice

9.4.3

 © Clear View Training 2008 v2.5 24

Associations and
attributes

 If a navigable relationship has a role name, it is as though the source class has a pseudo-
attribute whose attribute name is the role name and whose attribute type is the target
class

 Objects of the source class can refer to objects of the target class using this pseudo-
attribute

 Use associations when:
 The target class is an important part of the model
 The target class is a class that you have designed yourself and which must be shown on the model

 Use attributes when:
 The target class is not an important part of the model e.g. a primitive type such as number, string

etc.
 The target class is just an implementation detail such as a bought-in component or a library

component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=

9.4.4

 © Clear View Training 2008 v2.5 25

Association classes

 Not on the Person class - there is a different salary for each
employment

 Not on the Company class - different Person objects have different
salaries

 The salary is a property of the employment relationship itself
 every time a Person object is employed by a Company object, there is a

salary

Company Person
* *

Each Person object can work for many Company objects.
Each Company object can employ many Person objects.
When a Person object is employed by a Company object, the Person has a
salary.

But where do we record the Person’s salary?

employment

9.4.5

 © Clear View Training 2008 v2.5 26

Association class syntax

 We model the association itself as an association class. One instance
of this class exists for each link between a Person object and a
Company object
 Instances of the association class are links that have attributes and

operations
 Can only use association classes when there is one unique link between

two specific objects. This is because the identity of links is determined
exclusively by the identities of the objects on the ends of the link

 We can place the salary and any other attributes or operations which
are really features of the association into this class

Company Person* *

Job

salary:double

the association class
consists of the class,
the association and
the dashed line

association class

9.4.5

 © Clear View Training 2008 v2.5 27

Using association classes

Company Person* *

Job
salary:double

If we use an association
class, then a particular
Person can have only
one Job with a
particular Company

If, however a
particular Person
can have multiple
jobs with the same
Company, then we
must use a reified
association

Company Person
Job

salary:double

** 11

9.4.5

 © Clear View Training 2008 v2.5 28

Qualified associations
 Qualified associations

reduce an n to many
association to an n to 1
association by specifying a
unique object (or group of
objects) from the set

 They are useful to show how
we can look up or navigate
to specific objects

 Qualifiers usually refer to an
attribute on the target class

Club

Member

1

*

Club

Member

1

0..1

memberId

memberId:String memberId:String

the combination (Club,
memberId) specifies a
unique target object

qualifier

9.4.6

 © Clear View Training 2008 v2.5 29

Summary

 In this section we have looked at:
 Links – relationships between objects
 Associations – relationships between classes

 role names
 multiplicity
 navigability
 association classes
 qualified associations

9.6

	OO Analysis and Design with UML 2 and UP
	Analysis - finding analysis classes
	Analyse a use case
	What are Analysis classes?
	What makes a good analysis class?
	Finding classes
	Noun/verb analysis procedure
	CRC card procedure
	Other sources of classes
	Slide 10
	Analysis - relationships
	What is a relationship?
	What is a link?
	Object diagrams
	What is an association?
	Association syntax
	Slide 17
	Multiplicity exercise
	Exercise
	Reflexive associations
	Hierarchies and networks
	Navigability
	Navigability - standard practice
	Associations and attributes
	Association classes
	Association class syntax
	Using association classes
	Qualified associations
	Slide 29

