
 © Clear View Training 2008 v2.5 1

OO Analysis and Design
with UML 2 and UP

Dr. Jim Arlow,
Zuhlke Engineering Limited

 © Clear View Training 2008 v2.5 2

Analysis - introduction

 © Clear View Training 2008 v2.5 3

Analysis - purpose
 Produce an Analysis Model of the

system’s desired behaviour:
 This model should be a statement of

what the system does not how it does
it

 We can think of the analysis model as
a “first-cut” or “high level” design
model

 It is in the language of the business
 In the Analysis Model we identify:

 Analysis classes
 Use-case realizations

Inception Elaboration Construction Transition

6.2

 © Clear View Training 2008 v2.5 4

Analysis - metamodel
 Packages

contain UML
modelling
elements and
diagrams (we
only show the
elements
here)

 Each element
or diagram is
owned by
exactly one
package

Analysis Model

P1

P3

P2

P4

analysis class use case realization

6.3

 © Clear View Training 2008 v2.5 5

Workflow - Analysis
 Analysis guidelines:

 50 to 100 classes in the analysis model of a
moderately complex system

 Only include classes which are part of the
vocabulary of the problem domain

 Don’t worry about classes which define how
something is implemented – we will address these
in Design

 Focus on classes and associations
 Don’t worry about class inheritance too much
 Keep it simple!!!

Architectural analysis

Analyze a use case

Analyze a classComponent Engineer

Architect

Use Case Engineer

Analyze a package

6.4

6.5

 © Clear View Training 2008 v2.5 6

Analysis - objects and
classes

 © Clear View Training 2008 v2.5 7

What are objects?

 Objects consist of data and function packaged together in a
reusable unit. Objects encapsulate data

 Every object is an instance of some class which defines the
common set of features (attributes and operations) shared by all of
its instances. Objects have:
 Attribute values – the data part
 Operations – the behaviour part

 All objects have:
 Identity: Each object has its own unique identity and can be accessed

by a unique handle
 State: This is the actual data values stored in an object at any point in

time
 Behaviour: The set of operations that an object can perform

7.2

 © Clear View Training 2008 v2.5 8

Encapsulation
 Data is hidden inside

the object. The only
way to access the data
is via one of the
operations

 This is encapsulation or
data hiding and it is a
very powerful idea. It
leads to more robust
software and reusable
code.

number = "1243"

owner = "Jim Arlow"

balance = 300.00

deposit()

withdraw()

getOwner()

setOwner()

An Account Object

attribute values
operations

7.2.1

 © Clear View Training 2008 v2.5 9

Messaging
 In OO systems, objects send messages to each other over links
 These messages cause an object to invoke an operation

Bank Object Account Object

withdraw(150.00)

the Bank object sends the
message “withdraw
150.00” to an Account
object.

the Account object responds by
invoking its withdraw operation.
This operation decrements the
account balance by 150.00.

message

7.2.2

 © Clear View Training 2008 v2.5 10

UML Object Syntax

 All objects of a particular class have the same set of operations. They are not shown on
the object diagram, they are shown on the class diagram (see later)

 Attribute types are often omitted to simplify the diagram
 Naming:

 object and attribute names in lowerCamelCase
 class names in UpperCamelCase

jimsAccount : Account

accountNumber : String = "1234567"
owner : String = "Jim Arlow"
balance : double = 300.00

attribute
name

attribute
compartment

name
compartment

attribute
type

attribute
value

object
name

class
name

jimsAccount : Account

jimsAccount

: Account

object and
class name

object
name only

class
name only

variants
(N.B. we've omitted the attribute compartment)

an anonymous object

object identifier
(must be underlined)

7.3

 © Clear View Training 2008 v2.5 11

What are classes?

 Every object is an instance of one class - the class describes the
"type" of the object

 Classes allow us to model sets of objects that have the same
set of features - a class acts as a template for objects:
 The class determines the structure (set of features) of all objects of that

class
 All objects of a class must have the same set of operations, must have

the same attributes, but may have different attribute values
 Classification is one of the most important ways we have of

organising our view of the world
 Think of classes as being like:

 Rubber stamps
 Cookie cutters

class

object

7.4

 © Clear View Training 2008 v2.5 12

Exercise - how many
classes?

7.4

 © Clear View Training 2008 v2.5 13

Classes and objects
 Objects are instances of classes
 Instantiation is the creation of

new instances of model
elements

 Most classes provide special
operations called constructors
to create instances of that
class. These operations have
class-scope i.e. they belong to
the class itself rather than to
objects of the class

 We will see instantiation used
with other modelling elements
later on

withdraw()
deposit()

Account

accountNumber : String
owner : String
balance : double

objects

class

ilasAccount:Account

accountNumber : "803"
owner : "Ila"
balance : 310.00

fabsAccount:Account

accountNumber : "802"
owner : "Fab"
balance : 1000.00

JimsAccount:Account

accountNumber : "801"
owner : "Jim"
balance : 300.00

«instantiate»«instantiate» «instantiate»

objects are instances of classes

7.4.1

 © Clear View Training 2008 v2.5 14

UML class notation

 Classes are named in UpperCamelCase
 Use descriptive names that are nouns or noun phrases
 Avoid abbreviations!

Window

+size : Area=(100,100)
#visibility : Boolean = false
+defaultSize: Rectangle
#maximumSize : Rectangle
-xptr : XWindow*

+create()
+hide()
+display(location : Point)
-attachXWindow(xwin : XWindow*)

{author = Jim,
status = tested}

name
compartment

attribute
compartment

operation
compartment

class name tagged values

initial
values

class scope (static)
operation

visibility
adornment

7.5

 © Clear View Training 2008 v2.5 15

Attribute compartment

 Everything is optional except name
 initialValue is the value the attribute gets when objects of the

class are instantiated
 Attributes are named in lowerCamelCase

 Use descriptive names that are nouns or noun phrases
 Avoid abbreviations

 Attributes may be prefixed with a stereotype and postfixed
with a list of tagged values

visibility name : type multiplicity = initialValue

mandatory

7.5.2

 © Clear View Training 2008 v2.5 16

Visibility

 You may ignore visibility in analysis
 In design, attributes usually have private

visibility (encapsulation)

Symbol Name Semantics

+ public Any element that can access the class can access any of its
features with public visibility

- private Only operations within the class can access features with private
visibility

protected Only operations within the class, or within children of the class,
can access features with protected visibility

~ package Any element that is in the same package as the class, or in a
nested subpackage, can access any of its features with package
visibility

PersonDetails

-name : String [2..*]
-address : String [3]
-emailAddress : String [0..1]

7.5.2.1

 © Clear View Training 2008 v2.5 17

Multiplicity

 Multiplicity allows you to model
collections of things
 [0..1] means an that the attribute may have

the value null

PersonDetails

-name : String [2..*]
-address : String [3]
-emailAddress : String [0..1]

name is composed of 2 or more Strings

address is composed of 3 Strings

emailAddress is composed of 1 String or null

multiplicity expression

7.5.2.3

 © Clear View Training 2008 v2.5 18

Operation compartment

visibility name(direction parameterName: parameterType = default, …) : returnType

parameter list

operation signature

 Operations are named lowerCamelCase
 Special symbols and abbreviations are avoided
 Operation names are usually a verb or verb phrase

 Operations may have more than one returnType
 They can return multiple objects (see next slide)

 Operations may be prefixed with a stereotype and
postfixed with a list of tagged values

there may be
a comma
delimited list
of return types
- r1, r2,… rn

7.5.3

 © Clear View Training 2008 v2.5 19

Parameter direction
parameter
direction

semantics

in the parameter is an input to the operation. It is not changed by
the operation. This is the default

out the parameter serves as a repository for output from the
operation

inout the parameter is an input to the operation and it may be
changed by the operation

return the parameter is one of the return values of the operation. An
alternative way of specifying return values

maxMin(in a: int, in b:int, return maxValue:int return minValue:int)
…
max, min = maxMin(5, 10)

example of multiple return values:

7.5.3.1

use in detailed design only!

 © Clear View Training 2008 v2.5 20

Scope

 There are two kinds of scope for
attributes and operations:

BankAccount

-accountNumber : int
-count : int = 0

+create(aNumber : int)
+getNumber() : int
-incrementCount()
+getCount() : int

class scope
(underlined)

instance scope
(the default)

7.6

 © Clear View Training 2008 v2.5 21

Instance scope vs. class
scope

instance scope class scope

attri
bute

s

By default, attributes have instance scope Attributes may be defined as class scope

Every object of the class gets its own copy of
the instance scope attributes

Every object of the class shares the same,
single copy of the class scope attributes

Each object may therefore have different
instance scope attribute values

Each object will therefore have the same class
scope attribute values

oper
ation

s

By default, operations have instance scope Operations may be defined as class scope

Every invocation of an instance scope
operation applies to a specific instance of the
class

Invocation of a class scope operation does not
apply to any specific instance of the class –
instead, you can think of class scope
operations as applying to the class itself

You can’t invoke an instance scope operation
unless you have an instance of the class
available. You can’t use an instance scope
operation of a class to create objects of that
class, as you could never create the first object

You can invoke a class scope operation even if
there is no instance of the class available –
this is ideal for object creation operations

scope determines access

7.6.1

 © Clear View Training 2008 v2.5 22

Object construction

 How do we create instances of classes?
 Each class defines one or more class scope

operations which are constructors. These
operations create new instances of the class

BankAccount

+create(aNumber : int)

BankAccount

+BankAccount(aNumber : int)

generic constructor name Java/C++ standard

7.7

 © Clear View Training 2008 v2.5 23

ClubMember class
example

 Each ClubMember object has
its own copy of the attribute
membershipNumber

 The numberOfMembers
attribute exists only once and
is shared by all instances of
the ClubMember class

 Suppose that in the create
operation we increment
numberOfMembers:
 What is the value of count when

we have created 3 account
objects?

+create(number : String, name : String)
+getMembershipNumber() : String
+getMemberName() : String
-incrementNumberOfMembers()
+decrementNumberOfMembers()
+getNumberOfMembers() : int

ClubMember

-membershipNumber : String
-memberName : String
-numberOfMembers : int = 0

7.7.1

 © Clear View Training 2008 v2.5 24

Summary
 We have looked at objects and classes and

examined the relationship between them
 We have explored the UML syntax for modelling

classes including:
 Attributes
 Operations

 We have seen that scope controls access
 Attributes and operations are normally instance scope
 We can use class scope operations for constructor and

destructors
 Class scope attributes are shared by all objects of the

class and are useful as counters

7.8

	OO Analysis and Design with UML 2 and UP
	Analysis - introduction
	Analysis - purpose
	Analysis - metamodel
	Workflow - Analysis
	Analysis - objects and classes
	What are objects?
	Encapsulation
	Messaging
	UML Object Syntax
	What are classes?
	Exercise - how many classes?
	Classes and objects
	UML class notation
	Attribute compartment
	Visibility
	Multiplicity
	Operation compartment
	Parameter direction
	Scope
	Instance scope vs. class scope
	Object construction
	ClubMember class example
	Slide 24

